-
1
-
-
0002339937
-
Persistence and extinction in Lotka-Volterra reaction-diffusion equations
-
L.J.S. Allen Persistence and extinction in Lotka-Volterra reaction-diffusion equations Math. Biosci. 65 1983 1 12
-
(1983)
Math. Biosci.
, vol.65
, pp. 1-12
-
-
Allen, L.J.S.1
-
2
-
-
38249035528
-
Global stability and periodic orbits for two patch predator-prey diffusion delay models
-
E. Beretta, and F. Solimano Global stability and periodic orbits for two patch predator-prey diffusion delay models Math. Biosci. 85 1987 153 183
-
(1987)
Math. Biosci.
, vol.85
, pp. 153-183
-
-
Beretta, E.1
Solimano, F.2
-
3
-
-
0000839494
-
Global asymptotic stability of Lotka-Volterra diffusion models with continuous time delays
-
E. Beretta, and Y. Takeuchi Global asymptotic stability of Lotka-Volterra diffusion models with continuous time delays SIAM J. Appl. Math. 48 1988 627 651
-
(1988)
SIAM J. Appl. Math.
, vol.48
, pp. 627-651
-
-
Beretta, E.1
Takeuchi, Y.2
-
4
-
-
0032142293
-
The effect of diffusion on the time varying Logistic population growth
-
J. Cui, and L. Chen The effect of diffusion on the time varying Logistic population growth Comput. Math. Appl. 36 1998 1 9
-
(1998)
Comput. Math. Appl.
, vol.36
, pp. 1-9
-
-
Cui, J.1
Chen, L.2
-
5
-
-
0035877556
-
Permanent and extinction in logistic and Lotka-Volterra systems with diffusion
-
J. Cui, and L. Chen Permanent and extinction in logistic and Lotka-Volterra systems with diffusion J. Math. Anal. Appl. 258 2001 512 535
-
(2001)
J. Math. Anal. Appl.
, vol.258
, pp. 512-535
-
-
Cui, J.1
Chen, L.2
-
6
-
-
4544243200
-
Permanence and extinction for dispersal population systems
-
J. Cui, Y. Takeuchi, and Z. Lin Permanence and extinction for dispersal population systems J. Math. Anal. Appl. 298 2004 73 97
-
(2004)
J. Math. Anal. Appl.
, vol.298
, pp. 73-97
-
-
Cui, J.1
Takeuchi, Y.2
Lin, Z.3
-
7
-
-
84966258595
-
Persistence definitions and their connections
-
H.I. Freedman, and P. Moson Persistence definitions and their connections Proc. AMS 109 1990 1025 1032
-
(1990)
Proc. AMS
, vol.109
, pp. 1025-1032
-
-
Freedman, H.I.1
Moson, P.2
-
8
-
-
84963388063
-
Predator survival versus extinction as a function of dispersal in a predator-prey model with patchy environment
-
H.I. Freedman, and Y. Takeuchi Predator survival versus extinction as a function of dispersal in a predator-prey model with patchy environment Appl. Anal. 31 1989 247 266
-
(1989)
Appl. Anal.
, vol.31
, pp. 247-266
-
-
Freedman, H.I.1
Takeuchi, Y.2
-
9
-
-
0000262789
-
Global stability and predator dynamics in a model of prey dispersal in a patchy environment
-
H.I. Freedman, and Y. Takeuchi Global stability and predator dynamics in a model of prey dispersal in a patchy environment Nonlinear Anal. TMA 13 1989 993 1002
-
(1989)
Nonlinear Anal. TMA
, vol.13
, pp. 993-1002
-
-
Freedman, H.I.1
Takeuchi, Y.2
-
10
-
-
0001363099
-
Mathematical models of population interaction with dispersal. I. Stability of two habitats with and without a predator
-
H.I. Freedman, and P. Waltman Mathematical models of population interaction with dispersal. I. Stability of two habitats with and without a predator SIAM J. Math. 32 1977 631 648
-
(1977)
SIAM J. Math.
, vol.32
, pp. 631-648
-
-
Freedman, H.I.1
Waltman, P.2
-
11
-
-
0028359362
-
Predator-prey dynamics in models of prey dispersal in two-patch environments
-
Y. Kuang, and Y. Takeuchi Predator-prey dynamics in models of prey dispersal in two-patch environments Math. Biosci. 120 1994 77 98
-
(1994)
Math. Biosci.
, vol.120
, pp. 77-98
-
-
Kuang, Y.1
Takeuchi, Y.2
-
12
-
-
0005007153
-
The persistence of two species Lotka-Volterra model with diffusion
-
M. Luo, and Z. Ma The persistence of two species Lotka-Volterra model with diffusion J. Biomath. 12 1997 52 59 (in Chinese)
-
(1997)
J. Biomath.
, vol.12
, pp. 52-59
-
-
Luo, M.1
Ma, Z.2
-
13
-
-
0007452641
-
Cooperative systems of differential equation with concave nonlinearities
-
H.L. Smith Cooperative systems of differential equation with concave nonlinearities Nonlinear Anal. 10 1986 1037 1052
-
(1986)
Nonlinear Anal.
, vol.10
, pp. 1037-1052
-
-
Smith, H.L.1
-
15
-
-
3042542077
-
Permanence and extinction of periodic predator-prey systems in patchy environment with delay
-
Z. Teng, and L. Chen Permanence and extinction of periodic predator-prey systems in patchy environment with delay Nonlinear Anal.: Real World Appl. 4 2003 335 364
-
(2003)
Nonlinear Anal.: Real World Appl.
, vol.4
, pp. 335-364
-
-
Teng, Z.1
Chen, L.2
-
16
-
-
0033841964
-
Uniform persistence and permanence for non-autonomous semiflows in population biology
-
H.R. Thieme Uniform persistence and permanence for non-autonomous semiflows in population biology Math. Biosci. 166 2000 173 201
-
(2000)
Math. Biosci.
, vol.166
, pp. 173-201
-
-
Thieme, H.R.1
-
17
-
-
0043076434
-
Periodic solutions for a delayed predator-prey model of prey dispersal in two-patch environments
-
R. Xu, M.A.J. Chaplain, and F.A. Davidson Periodic solutions for a delayed predator-prey model of prey dispersal in two-patch environments Nonlinear Anal.: Real World Appl. 5 2004 183 206
-
(2004)
Nonlinear Anal.: Real World Appl.
, vol.5
, pp. 183-206
-
-
Xu, R.1
Chaplain, M.A.J.2
Davidson, F.A.3
-
19
-
-
0002943884
-
The qualitative analysis of N-species Lotka-Volterra periodic competition systems
-
X.-Q. Zhao The qualitative analysis of N-species Lotka-Volterra periodic competition systems Math. Comp. Modeling 15 1991 3 8
-
(1991)
Math. Comp. Modeling
, vol.15
, pp. 3-8
-
-
Zhao, X.-Q.1
-
20
-
-
0038104718
-
Bifurcation analysis of a predator-prey system with nonmonotonic functional response
-
H. Zhu, S.A. Campbell, and G. Wolkowicz Bifurcation analysis of a predator-prey system with nonmonotonic functional response SIAM J. Appl. Math. 63 2002 636 682
-
(2002)
SIAM J. Appl. Math.
, vol.63
, pp. 636-682
-
-
Zhu, H.1
Campbell, S.A.2
Wolkowicz, G.3
|