-
1
-
-
0036013593
-
-
RMPHAT. 0034-6861. 10.1103/RevModPhys.74.47
-
R. Albert and A.-L. Barabási, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.74.47 74, 47 (2002).
-
(2002)
Rev. Mod. Phys.
, vol.74
, pp. 47
-
-
Albert, R.1
Barabási, A.-L.2
-
2
-
-
0036610173
-
-
ADPHAH 0001-8732 10.1080/00018730110112519
-
S. N. Dorogvtsev and J. F. F. Mendes, Adv. Phys. ADPHAH 0001-8732 10.1080/00018730110112519 51, 1079 (2002).
-
(2002)
Adv. Phys.
, vol.51
, pp. 1079
-
-
Dorogvtsev, S.N.1
Mendes, J.F.F.2
-
3
-
-
0038718854
-
-
SIREAD 0036-1445 10.1103/RevModPhys.74.47
-
M. E. J. Newman, SIAM Rev. SIREAD 0036-1445 10.1103/RevModPhys.74.47 45, 167 (2003).
-
(2003)
SIAM Rev.
, vol.45
, pp. 167
-
-
Newman, M.E.J.1
-
4
-
-
0034609791
-
-
NATUAS. 0028-0836. 10.1038/35036627
-
H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási, Nature (London) NATUAS 0028-0836 10.1038/35036627 407, 651 (2000).
-
(2000)
Nature (London)
, vol.407
, pp. 651
-
-
Jeong, H.1
Tombor, B.2
Albert, R.3
Oltvai, Z.N.4
Barabási, A.-L.5
-
5
-
-
0036792011
-
-
PNASA6 0027-8424 10.1073/pnas.202301299
-
K. I. Goh, E. S. Oh, H. Jeong, B. Kahng, and D. Kim, Proc. Natl. Acad. Sci. U.S.A. PNASA6 0027-8424 10.1073/pnas.202301299 99, 12583 (2002).
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 12583
-
-
Goh, K.I.1
Oh, E.S.2
Jeong, H.3
Kahng, B.4
Kim, D.5
-
6
-
-
20344377406
-
-
PNASA6 0027-8424 10.1073/pnas.0407994102
-
R. Guimera, S. Mossa, A. Turtschi, and L. A. N. Amaral, Proc. Natl. Acad. Sci. U.S.A. PNASA6 0027-8424 10.1073/pnas.0407994102 102, 7794 (2005).
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 7794
-
-
Guimera, R.1
Mossa, S.2
Turtschi, A.3
Amaral, L.A.N.4
-
8
-
-
42749104236
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.69.037104
-
F. Comellas, G. Fertin, and A. Raspaud, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.69.037104 69, 037104 (2004).
-
(2004)
Phys. Rev. e
, vol.69
, pp. 037104
-
-
Comellas, F.1
Fertin, G.2
Raspaud, A.3
-
9
-
-
18144407310
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.94.018702
-
J. S. Andrade, Jr., H. J. Herrmann, R. F. S. Andrade, and L. R. da Silva, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.018702 94, 018702 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 018702
-
-
Andrade Jr., J.S.1
Herrmann, H.J.2
Andrade, R.F.S.3
Da Silva, L.R.4
-
10
-
-
41349109486
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.71.016128
-
J. P. K. Doye and C. P. Massen, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.71.016128 71, 016128 (2005).
-
(2005)
Phys. Rev. e
, vol.71
, pp. 016128
-
-
Doye, J.P.K.1
Massen, C.P.2
-
11
-
-
0036606539
-
-
PHYADX 0378-4371 10.1016/S0378-4371(02)00741-0
-
F. Comellas and M. Sampels, Physica A PHYADX 0378-4371 10.1016/S0378-4371(02)00741-0 309, 231 (2002).
-
(2002)
Physica A
, vol.309
, pp. 231
-
-
Comellas, F.1
Sampels, M.2
-
12
-
-
41349084322
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.71.046141
-
T. Zhou, G. Yan, and B. H. Wang, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.71.046141 71, 046141 (2005).
-
(2005)
Phys. Rev. e
, vol.71
, pp. 046141
-
-
Zhou, T.1
Yan, G.2
Wang, B.H.3
-
14
-
-
28844474185
-
-
cond-mat0409414
-
T. Zhou, G. Yan, P.-L. Zhou, Z.-Q. Fu, and B.-H. Wang, eprint arXiv: cond-mat0409414 (2004).
-
(2004)
-
-
Zhou, T.1
Yan, G.2
Zhou, P.-L.3
Fu, Z.-Q.4
Wang, B.-H.5
-
18
-
-
0032116460
-
-
JSTPBS 0022-4715 10.1023/A:1023047703307
-
N. Rajewsky, L. Santen, A. Schadschneider, and M. Schreckenberg, J. Stat. Phys. JSTPBS 0022-4715 10.1023/A:1023047703307 92, 151 (1998);
-
(1998)
J. Stat. Phys.
, vol.92
, pp. 151
-
-
Rajewsky, N.1
Santen, L.2
Schadschneider, A.3
Schreckenberg, M.4
-
20
-
-
23244459882
-
-
NJOPFM 1367-2630 10.1088/1367-2630/7/1/026
-
E. Bollt and D. ben-Avraham, New J. Phys. NJOPFM 1367-2630 10.1088/1367-2630/7/1/026 7, 26 (2005).
-
(2005)
New J. Phys.
, vol.7
, pp. 26
-
-
Bollt, E.1
Ben-Avraham, D.2
-
21
-
-
28844450988
-
-
Indeed, smaller simulations of nets with a few thousand nodes fail to reveal convincing differences between the two methods and the degree exponent seems then consistent with that of the deterministic tree. Note that even with 107 nodes the largest degree in the nets are only about 100 (method b) and 300 (a).
-
Indeed, smaller simulations of nets with a few thousand nodes fail to reveal convincing differences between the two methods and the degree exponent seems then consistent with that of the deterministic tree. Note that even with 107 nodes the largest degree in the nets are only about 100 (method b) and 300 (a).
-
-
-
|