-
1
-
-
0034275834
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.85.2204
-
T. Ogasawara, M. Ashida, N. Motoyama, H. Eisaki, S. Uchida, Y. Tokura, H. Ghosh, A. Shukla, S. Mazumdar, and M. Kuwata-Gonokami, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85.2204 85, 2204 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 2204
-
-
Ogasawara, T.1
Ashida, M.2
Motoyama, N.3
Eisaki, H.4
Uchida, S.5
Tokura, Y.6
Ghosh, H.7
Shukla, A.8
Mazumdar, S.9
Kuwata-Gonokami, M.10
-
2
-
-
0034702286
-
-
NATUAS 0028-0836 10.1038/35016036
-
H. Kishida, H. Matsuzaki, H. Okamoto, T. Tanabe, M. Yamashita, Y. Taguchi, and Y. Tokura, Nature (London) NATUAS 0028-0836 10.1038/35016036 405, 929 (2000).
-
(2000)
Nature (London)
, vol.405
, pp. 929
-
-
Kishida, H.1
Matsuzaki, H.2
Okamoto, H.3
Tanabe, T.4
Yamashita, M.5
Taguchi, Y.6
Tokura, Y.7
-
3
-
-
0035934778
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.87.177401
-
H. Kishida, M. Ono, K. Miura, H. Okamoto, M. Izumi, T. Manako, M. Kawasaki, Y. Taguchi, Y. Tokura, T. Tohyama, K. Tsutsui, and S. Maekawa, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.87.177401 87, 177401 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 177401
-
-
Kishida, H.1
Ono, M.2
Miura, K.3
Okamoto, H.4
Izumi, M.5
Manako, T.6
Kawasaki, M.7
Taguchi, Y.8
Tokura, Y.9
Tohyama, T.10
Tsutsui, K.11
Maekawa, S.12
-
4
-
-
0000884426
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.62.R4769
-
Y. Mizuno, K. Tsutsui, T. Tohyama, and S. Maekawa, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.62.R4769 62, R4769 (2000).
-
(2000)
Phys. Rev. B
, vol.62
, pp. 4769
-
-
Mizuno, Y.1
Tsutsui, K.2
Tohyama, T.3
Maekawa, S.4
-
5
-
-
19544383376
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.70.085101
-
M. Ono, K. Miura, A. Maeda, H. Matsuzaki, H. Kishida, Y. Taguchi, Y. Tokura, M. Yamashita, and H. Okamoto, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.70.085101 70, 085101 (2004).
-
(2004)
Phys. Rev. B
, vol.70
, pp. 085101
-
-
Ono, M.1
Miura, K.2
Maeda, A.3
Matsuzaki, H.4
Kishida, H.5
Taguchi, Y.6
Tokura, Y.7
Yamashita, M.8
Okamoto, H.9
-
6
-
-
37649031815
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.70.033102
-
H. Matsueda, T. Tohyama, and S. Maekawa, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.70.033102 70, 033102 (2004).
-
(2004)
Phys. Rev. B
, vol.70
, pp. 033102
-
-
Matsueda, H.1
Tohyama, T.2
Maekawa, S.3
-
9
-
-
0037101328
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.66.045114
-
E. Jeckelmann, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.66.045114 66, 045114 (2002).
-
(2002)
Phys. Rev. B
, vol.66
, pp. 045114
-
-
Jeckelmann, E.1
-
10
-
-
0037441269
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.67.075106
-
E. Jeckelmann, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.67.075106 67, 075106 (2003).
-
(2003)
Phys. Rev. B
, vol.67
, pp. 075106
-
-
Jeckelmann, E.1
-
11
-
-
0035881102
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.64.085119
-
S. S. Kancharla and C. J. Bolech, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.64.085119 64, 085119 (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 085119
-
-
Kancharla, S.S.1
Bolech, C.J.2
-
12
-
-
0037124781
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.88.247601
-
S. I. Fujimori, A. Ino, T. Okane, A. Fujimori, K. Okada, T. Manabe, M. Yamashita, H. Kishida, and H. Okamoto, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.88.247601 88, 247601 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 247601
-
-
Fujimori, S.I.1
Ino, A.2
Okane, T.3
Fujimori, A.4
Okada, K.5
Manabe, T.6
Yamashita, M.7
Kishida, H.8
Okamoto, H.9
-
13
-
-
0033728379
-
-
JLUMA8 0022-2313
-
H. Okamoto, H. Kishida, M. Ono, H. Matsuzaki, M. Yamashita, and T. Manabe, J. Lumin. JLUMA8 0022-2313 87-89, 204 (2000).
-
(2000)
J. Lumin.
, vol.87-89
, pp. 204
-
-
Okamoto, H.1
Kishida, H.2
Ono, M.3
Matsuzaki, H.4
Yamashita, M.5
Manabe, T.6
-
14
-
-
0001087331
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.54.8438
-
H. Okamoto, Y. Shimada, Y. Oka, A. Chainani, T. Takahashi, H. Kitagawa, T. Mitani, K. Toriumi, K. Inoue, T. Manabe, and M. Yamashita, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.54.8438 54, 8438 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 8438
-
-
Okamoto, H.1
Shimada, Y.2
Oka, Y.3
Chainani, A.4
Takahashi, T.5
Kitagawa, H.6
Mitani, T.7
Toriumi, K.8
Inoue, K.9
Manabe, T.10
Yamashita, M.11
-
15
-
-
3442895828
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.69.2863
-
S. R. White, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.69. 2863 69, 2863 (1992);
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 2863
-
-
White, S.R.1
-
16
-
-
20044389808
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.48.10345
-
S. R. White, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.48.10345 48, 10345 (1993).
-
(1993)
Phys. Rev. B
, vol.48
, pp. 10345
-
-
White, S.R.1
-
17
-
-
0001395634
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.52.R9827
-
K. A. Hallberg, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.52.R9827 52, R9827 (1995).
-
(1995)
Phys. Rev. B
, vol.52
, pp. 9827
-
-
Hallberg, K.A.1
-
18
-
-
4243505559
-
-
PRBMDO. 0163-1829. 10.1103/PhysRevB.60.335
-
T. D. Kühner and S. R. White, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.60.335 60, 335 (1999).
-
(1999)
Phys. Rev. B
, vol.60
, pp. 335
-
-
Kühner, T.D.1
White, S.R.2
-
19
-
-
0001158718
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.57.5326
-
Y. Mizuno, T. Tohyama, S. Maekawa, T. Osafune, N. Motoyama, H. Eisaki, and S. Uchida, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.57.5326 57, 5326 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 5326
-
-
Mizuno, Y.1
Tohyama, T.2
Maekawa, S.3
Osafune, T.4
Motoyama, N.5
Eisaki, H.6
Uchida, S.7
-
20
-
-
28744445533
-
-
cond-mat/0306438;
-
F. Gebhard, E. Jeckelmann, S. Mahlert, S. Nishimoto, and R. M. Noack, cond-mat/0306438;
-
-
-
Gebhard, F.1
Jeckelmann, E.2
Mahlert, S.3
Nishimoto, S.4
Noack, R.M.5
-
21
-
-
1542284053
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.69.041102
-
C. Raas, G. S. Uhrig, and F. B. Anders, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.69.041102 69, 041102 (R) (2004);
-
(2004)
Phys. Rev. B
, vol.69
, pp. 041102
-
-
Raas, C.1
Uhrig, G.S.2
Anders, F.B.3
-
22
-
-
28744452961
-
-
G. S. Uhrig (private communications). By the Lorentz transformation, χγ (ω) can be decomposed into a set of Lorentzian components. The transformation is given by χγ (ω) = d ω′ γχ (ω′) π [(ω- ω′) 2 + γ2], with χ (ω′) denoting the intensity of the decomposed Lorentian. In actual numerical calculation, the integral is limited within a range where χγ (ω) is finite. The energies ω and ω′ are discretized equidistantly (ω1 < ω2 < < ωn and ωi+1 - ωi =δω for any i). In this case, the equation is rewritten by Xγ =XM, where Xγ = (χγ (ω1), χγ (ω2),..., χγ (ωn)), X= (χ (ω1), χ (ω2),..., χ (ωn)) and the (i,j) -component of the matrix M is defined by Mij = (δω π) γ [(ωi - ωj) 2 + γ2]. X is obtained by calculating Xγ M-1 with M-1 denoting the inverse matrix of M. It is noted that the numerically obtained χ (ωi) still has a finite broadening factor δω.
-
-
-
Uhrig, G.S.1
|