-
1
-
-
0036209055
-
Lie-algebraic stability criteria for switched systems
-
A.A. Agrachev, and D. Liberzon Lie-algebraic stability criteria for switched systems SIAM J. Control Optim. 40 2001 253 269
-
(2001)
SIAM J. Control Optim.
, vol.40
, pp. 253-269
-
-
Agrachev, A.A.1
Liberzon, D.2
-
3
-
-
14544307259
-
Nonlinear control systems of constant rank and bang-bang conditions for extremal controls
-
A.A. Agrachev, and S.A. Vakhrameev Nonlinear control systems of constant rank and bang-bang conditions for extremal controls Soviet Math. Dokl. 30 1984 620 624
-
(1984)
Soviet Math. Dokl.
, vol.30
, pp. 620-624
-
-
Agrachev, A.A.1
Vakhrameev, S.A.2
-
5
-
-
0037225457
-
Stability of planar switched systems: The linear single input case
-
U. Boscain Stability of planar switched systems: the linear single input case SIAM J. Control Optim. 41 2002 89 112
-
(2002)
SIAM J. Control Optim.
, vol.41
, pp. 89-112
-
-
Boscain, U.1
-
7
-
-
33846998909
-
Stability of discrete linear inclusion
-
L. Gurvits Stability of discrete linear inclusion Linear Algebra Appl. 231 1995 47 85
-
(1995)
Linear Algebra Appl.
, vol.231
, pp. 47-85
-
-
Gurvits, L.1
-
8
-
-
0141869041
-
Stability analysis of switched homogeneous systems in the plane
-
D. Holcman, and M. Margaliot Stability analysis of switched homogeneous systems in the plane SIAM J. Control Optim. 41 5 2003 1609 1625
-
(2003)
SIAM J. Control Optim.
, vol.41
, Issue.5
, pp. 1609-1625
-
-
Holcman, D.1
Margaliot, M.2
-
11
-
-
84884860951
-
Lie algebras and stability of switched nonlinear systems
-
V. Blondel A. Megretski Princeton University Press NJ
-
D. Liberzon Lie algebras and stability of switched nonlinear systems V. Blondel A. Megretski Unsolved Problems in Mathematical Systems and Control Theory 2004 Princeton University Press NJ 203 207
-
(2004)
Unsolved Problems in Mathematical Systems and Control Theory
, pp. 203-207
-
-
Liberzon, D.1
-
13
-
-
0029775547
-
A smooth converse Lyapunov theorem for robust stability
-
Y. Lin, E.D. Sontag, and Y. Wang A smooth converse Lyapunov theorem for robust stability SIAM J. Control Optim. 34 1996 124 160
-
(1996)
SIAM J. Control Optim.
, vol.34
, pp. 124-160
-
-
Lin, Y.1
Sontag, E.D.2
Wang, Y.3
-
14
-
-
0034315065
-
A condition for the stability of switched nonlinear systems
-
J.L. Mancilla-Aguilar A condition for the stability of switched nonlinear systems IEEE Trans. Automat. Control 45 2000 2077 2079
-
(2000)
IEEE Trans. Automat. Control
, vol.45
, pp. 2077-2079
-
-
Mancilla-Aguilar, J.L.1
-
15
-
-
2442455371
-
The problem of absolute stability: A dynamic programming approach
-
M. Margaliot, and R. Gitizadeh The problem of absolute stability: a dynamic programming approach Automatica 40 2004 1247 1252
-
(2004)
Automatica
, vol.40
, pp. 1247-1252
-
-
Margaliot, M.1
Gitizadeh, R.2
-
16
-
-
0037303811
-
Necessary and sufficient conditions for absolute stability: The case of second-order systems
-
M. Margaliot, and G. Langholz Necessary and sufficient conditions for absolute stability: the case of second-order systems IEEE Trans. Circuits Systems-I 50 2003 227 234
-
(2003)
IEEE Trans. Circuits Systems-I
, vol.50
, pp. 227-234
-
-
Margaliot, M.1
Langholz, G.2
-
17
-
-
0028728038
-
A common Lyapunov function for stable LTI systems with commuting A-matrices
-
K.S. Narendra, and J. Balakrishnan A common Lyapunov function for stable LTI systems with commuting A -matrices IEEE Trans. Automat. Control 39 1994 2469 2471
-
(1994)
IEEE Trans. Automat. Control
, vol.39
, pp. 2469-2471
-
-
Narendra, K.S.1
Balakrishnan, J.2
-
18
-
-
0003279657
-
A global formulation of the Lie theory of transformation groups
-
R.S. Palais A global formulation of the Lie theory of transformation groups Mem. Amer. Math. Soc. 22 1957 1 123
-
(1957)
Mem. Amer. Math. Soc.
, vol.22
, pp. 1-123
-
-
Palais, R.S.1
-
19
-
-
0030104856
-
Criteria of asymptotic stability of differential inclusions and periodic motions of time-varying nonlinear control systems
-
E.S. Pyatnitskiy, and L.B. Rapoport Criteria of asymptotic stability of differential inclusions and periodic motions of time-varying nonlinear control systems IEEE Trans. Circuits Systems-I 43 1996 219 229
-
(1996)
IEEE Trans. Circuits Systems-I
, vol.43
, pp. 219-229
-
-
Pyatnitskiy, E.S.1
Rapoport, L.B.2
-
20
-
-
85049806365
-
Asymptotic stability and periodic motions of selector-linear differential inclusions
-
F. Garofalo, L. Glielmo (Eds.), Robust Control via Variable Structure and Lyapunov Techniques Springer, Berlin
-
L.B. Rapoport, Asymptotic stability and periodic motions of selector-linear differential inclusions, in: F. Garofalo, L. Glielmo (Eds.), Robust Control via Variable Structure and Lyapunov Techniques, LNCIS 217, Springer, Berlin, 1996, pp. 269-285.
-
(1996)
LNCIS
, vol.217
, pp. 269-285
-
-
Rapoport, L.B.1
-
21
-
-
14544276938
-
Common Lyapunov function for exponentially stable nonlinear systems
-
H. Shim, D.J. Noh, and J.H. Seo Common Lyapunov function for exponentially stable nonlinear systems J. Korean Institute of Electrical Engineers 11 2001 108 111 (Presented at the 4th SIAM Conf. on Control and its Applications, 1998)
-
(2001)
J. Korean Institute of Electrical Engineers
, vol.11
, pp. 108-111
-
-
Shim, H.1
Noh, D.J.2
Seo, J.H.3
-
22
-
-
23644441469
-
Local regularity of optimal trajectories for control problems with general boundary conditions
-
M. Sigalotti Local regularity of optimal trajectories for control problems with general boundary conditions J. Dynam. Control Systems 11 2005 91 123
-
(2005)
J. Dynam. Control Systems
, vol.11
, pp. 91-123
-
-
Sigalotti, M.1
-
23
-
-
0018515818
-
A bang-bang theorem with bounds on the number of switchings
-
H.J. Sussmann A bang-bang theorem with bounds on the number of switchings SIAM J. Control Optim. 17 1979 629 651
-
(1979)
SIAM J. Control Optim.
, vol.17
, pp. 629-651
-
-
Sussmann, H.J.1
-
24
-
-
0002438310
-
Lie brackets, real analyticity and geometric control
-
R.W. Brockett R.S. Millman H.J. Sussmann Birkhäuser Boston
-
H.J. Sussmann Lie brackets, real analyticity and geometric control R.W. Brockett R.S. Millman H.J. Sussmann Differential Geometric Control Theory 1983 Birkhäuser Boston 1 116
-
(1983)
Differential Geometric Control Theory
, pp. 1-116
-
-
Sussmann, H.J.1
-
25
-
-
14544287619
-
A bang-bang theorem with a finite number of switchings for nonlinear smooth control systems
-
S.A. Vakhrameev A bang-bang theorem with a finite number of switchings for nonlinear smooth control systems J. Math. Sci. 85 1997 2002 2016
-
(1997)
J. Math. Sci.
, vol.85
, pp. 2002-2016
-
-
Vakhrameev, S.A.1
-
27
-
-
15844419019
-
Common Lyapunov functions for families of commuting nonlinear systems
-
L. Vu, and D. Liberzon Common Lyapunov functions for families of commuting nonlinear systems Systems Control Lett. 54 2005 405 416
-
(2005)
Systems Control Lett.
, vol.54
, pp. 405-416
-
-
Vu, L.1
Liberzon, D.2
|