메뉴 건너뛰기




Volumn 55, Issue 1, 2006, Pages 8-16

Lie-algebraic stability conditions for nonlinear switched systems and differential inclusions

Author keywords

Differential inclusion; Global asymptotic stability; Lie bracket; Maximum principle; Optimal control; Switched nonlinear system

Indexed keywords

ASYMPTOTIC STABILITY; MAXIMUM PRINCIPLE; OPTIMAL CONTROL SYSTEMS; SWITCHES; SWITCHING; SYSTEM STABILITY; VECTORS;

EID: 28444484618     PISSN: 01676911     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sysconle.2005.04.011     Document Type: Article
Times cited : (100)

References (27)
  • 1
    • 0036209055 scopus 로고    scopus 로고
    • Lie-algebraic stability criteria for switched systems
    • A.A. Agrachev, and D. Liberzon Lie-algebraic stability criteria for switched systems SIAM J. Control Optim. 40 2001 253 269
    • (2001) SIAM J. Control Optim. , vol.40 , pp. 253-269
    • Agrachev, A.A.1    Liberzon, D.2
  • 3
    • 14544307259 scopus 로고
    • Nonlinear control systems of constant rank and bang-bang conditions for extremal controls
    • A.A. Agrachev, and S.A. Vakhrameev Nonlinear control systems of constant rank and bang-bang conditions for extremal controls Soviet Math. Dokl. 30 1984 620 624
    • (1984) Soviet Math. Dokl. , vol.30 , pp. 620-624
    • Agrachev, A.A.1    Vakhrameev, S.A.2
  • 5
    • 0037225457 scopus 로고    scopus 로고
    • Stability of planar switched systems: The linear single input case
    • U. Boscain Stability of planar switched systems: the linear single input case SIAM J. Control Optim. 41 2002 89 112
    • (2002) SIAM J. Control Optim. , vol.41 , pp. 89-112
    • Boscain, U.1
  • 7
    • 33846998909 scopus 로고
    • Stability of discrete linear inclusion
    • L. Gurvits Stability of discrete linear inclusion Linear Algebra Appl. 231 1995 47 85
    • (1995) Linear Algebra Appl. , vol.231 , pp. 47-85
    • Gurvits, L.1
  • 8
    • 0141869041 scopus 로고    scopus 로고
    • Stability analysis of switched homogeneous systems in the plane
    • D. Holcman, and M. Margaliot Stability analysis of switched homogeneous systems in the plane SIAM J. Control Optim. 41 5 2003 1609 1625
    • (2003) SIAM J. Control Optim. , vol.41 , Issue.5 , pp. 1609-1625
    • Holcman, D.1    Margaliot, M.2
  • 11
    • 84884860951 scopus 로고    scopus 로고
    • Lie algebras and stability of switched nonlinear systems
    • V. Blondel A. Megretski Princeton University Press NJ
    • D. Liberzon Lie algebras and stability of switched nonlinear systems V. Blondel A. Megretski Unsolved Problems in Mathematical Systems and Control Theory 2004 Princeton University Press NJ 203 207
    • (2004) Unsolved Problems in Mathematical Systems and Control Theory , pp. 203-207
    • Liberzon, D.1
  • 12
    • 0000914485 scopus 로고    scopus 로고
    • Stability of switched systems: A Lie-algebraic condition
    • D. Liberzon, J.P. Hespanha, and A.S. Morse Stability of switched systems: a Lie-algebraic condition Systems Control Lett. 37 1999 117 122
    • (1999) Systems Control Lett. , vol.37 , pp. 117-122
    • Liberzon, D.1    Hespanha, J.P.2    Morse, A.S.3
  • 13
    • 0029775547 scopus 로고    scopus 로고
    • A smooth converse Lyapunov theorem for robust stability
    • Y. Lin, E.D. Sontag, and Y. Wang A smooth converse Lyapunov theorem for robust stability SIAM J. Control Optim. 34 1996 124 160
    • (1996) SIAM J. Control Optim. , vol.34 , pp. 124-160
    • Lin, Y.1    Sontag, E.D.2    Wang, Y.3
  • 14
    • 0034315065 scopus 로고    scopus 로고
    • A condition for the stability of switched nonlinear systems
    • J.L. Mancilla-Aguilar A condition for the stability of switched nonlinear systems IEEE Trans. Automat. Control 45 2000 2077 2079
    • (2000) IEEE Trans. Automat. Control , vol.45 , pp. 2077-2079
    • Mancilla-Aguilar, J.L.1
  • 15
    • 2442455371 scopus 로고    scopus 로고
    • The problem of absolute stability: A dynamic programming approach
    • M. Margaliot, and R. Gitizadeh The problem of absolute stability: a dynamic programming approach Automatica 40 2004 1247 1252
    • (2004) Automatica , vol.40 , pp. 1247-1252
    • Margaliot, M.1    Gitizadeh, R.2
  • 16
    • 0037303811 scopus 로고    scopus 로고
    • Necessary and sufficient conditions for absolute stability: The case of second-order systems
    • M. Margaliot, and G. Langholz Necessary and sufficient conditions for absolute stability: the case of second-order systems IEEE Trans. Circuits Systems-I 50 2003 227 234
    • (2003) IEEE Trans. Circuits Systems-I , vol.50 , pp. 227-234
    • Margaliot, M.1    Langholz, G.2
  • 17
    • 0028728038 scopus 로고
    • A common Lyapunov function for stable LTI systems with commuting A-matrices
    • K.S. Narendra, and J. Balakrishnan A common Lyapunov function for stable LTI systems with commuting A -matrices IEEE Trans. Automat. Control 39 1994 2469 2471
    • (1994) IEEE Trans. Automat. Control , vol.39 , pp. 2469-2471
    • Narendra, K.S.1    Balakrishnan, J.2
  • 18
    • 0003279657 scopus 로고
    • A global formulation of the Lie theory of transformation groups
    • R.S. Palais A global formulation of the Lie theory of transformation groups Mem. Amer. Math. Soc. 22 1957 1 123
    • (1957) Mem. Amer. Math. Soc. , vol.22 , pp. 1-123
    • Palais, R.S.1
  • 19
    • 0030104856 scopus 로고    scopus 로고
    • Criteria of asymptotic stability of differential inclusions and periodic motions of time-varying nonlinear control systems
    • E.S. Pyatnitskiy, and L.B. Rapoport Criteria of asymptotic stability of differential inclusions and periodic motions of time-varying nonlinear control systems IEEE Trans. Circuits Systems-I 43 1996 219 229
    • (1996) IEEE Trans. Circuits Systems-I , vol.43 , pp. 219-229
    • Pyatnitskiy, E.S.1    Rapoport, L.B.2
  • 20
    • 85049806365 scopus 로고    scopus 로고
    • Asymptotic stability and periodic motions of selector-linear differential inclusions
    • F. Garofalo, L. Glielmo (Eds.), Robust Control via Variable Structure and Lyapunov Techniques Springer, Berlin
    • L.B. Rapoport, Asymptotic stability and periodic motions of selector-linear differential inclusions, in: F. Garofalo, L. Glielmo (Eds.), Robust Control via Variable Structure and Lyapunov Techniques, LNCIS 217, Springer, Berlin, 1996, pp. 269-285.
    • (1996) LNCIS , vol.217 , pp. 269-285
    • Rapoport, L.B.1
  • 21
    • 14544276938 scopus 로고    scopus 로고
    • Common Lyapunov function for exponentially stable nonlinear systems
    • H. Shim, D.J. Noh, and J.H. Seo Common Lyapunov function for exponentially stable nonlinear systems J. Korean Institute of Electrical Engineers 11 2001 108 111 (Presented at the 4th SIAM Conf. on Control and its Applications, 1998)
    • (2001) J. Korean Institute of Electrical Engineers , vol.11 , pp. 108-111
    • Shim, H.1    Noh, D.J.2    Seo, J.H.3
  • 22
    • 23644441469 scopus 로고    scopus 로고
    • Local regularity of optimal trajectories for control problems with general boundary conditions
    • M. Sigalotti Local regularity of optimal trajectories for control problems with general boundary conditions J. Dynam. Control Systems 11 2005 91 123
    • (2005) J. Dynam. Control Systems , vol.11 , pp. 91-123
    • Sigalotti, M.1
  • 23
    • 0018515818 scopus 로고
    • A bang-bang theorem with bounds on the number of switchings
    • H.J. Sussmann A bang-bang theorem with bounds on the number of switchings SIAM J. Control Optim. 17 1979 629 651
    • (1979) SIAM J. Control Optim. , vol.17 , pp. 629-651
    • Sussmann, H.J.1
  • 24
    • 0002438310 scopus 로고
    • Lie brackets, real analyticity and geometric control
    • R.W. Brockett R.S. Millman H.J. Sussmann Birkhäuser Boston
    • H.J. Sussmann Lie brackets, real analyticity and geometric control R.W. Brockett R.S. Millman H.J. Sussmann Differential Geometric Control Theory 1983 Birkhäuser Boston 1 116
    • (1983) Differential Geometric Control Theory , pp. 1-116
    • Sussmann, H.J.1
  • 25
    • 14544287619 scopus 로고    scopus 로고
    • A bang-bang theorem with a finite number of switchings for nonlinear smooth control systems
    • S.A. Vakhrameev A bang-bang theorem with a finite number of switchings for nonlinear smooth control systems J. Math. Sci. 85 1997 2002 2016
    • (1997) J. Math. Sci. , vol.85 , pp. 2002-2016
    • Vakhrameev, S.A.1
  • 27
    • 15844419019 scopus 로고    scopus 로고
    • Common Lyapunov functions for families of commuting nonlinear systems
    • L. Vu, and D. Liberzon Common Lyapunov functions for families of commuting nonlinear systems Systems Control Lett. 54 2005 405 416
    • (2005) Systems Control Lett. , vol.54 , pp. 405-416
    • Vu, L.1    Liberzon, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.