메뉴 건너뛰기




Volumn 21, Issue 2, 2005, Pages 129-139

Prediction of uplift capacity of suction caissons using a neuro-genetic network

Author keywords

Genetic algorithms; Neural networks; Neuro genetic networks; Prediction of uplift capacity; Suction caissons

Indexed keywords

FINITE ELEMENT METHOD; GENETIC ALGORITHMS; LEARNING ALGORITHMS; MATHEMATICAL MODELS; MULTILAYER NEURAL NETWORKS;

EID: 28444457324     PISSN: 01770667     EISSN: 14355663     Source Type: Journal    
DOI: 10.1007/s00366-005-0315-9     Document Type: Article
Times cited : (14)

References (53)
  • 1
    • 0003413187 scopus 로고
    • Neural networks: A comprehensive foundation
    • IEEE Computer Society Press Macmillan
    • S Haykin 1994 Neural networks: A comprehensive foundation IEEE Computer Society Press Macmillan
    • (1994)
    • Haykin, S.1
  • 2
    • 0004164013 scopus 로고    scopus 로고
    • Fuzzy and neural approaches in engineering
    • Wiley New York
    • LH Tsoukalas RE Uhrig 1997 Fuzzy and neural approaches in engineering Wiley New York
    • (1997)
    • Tsoukalas, L.H.1    Uhrig, R.E.2
  • 4
    • 0003478385 scopus 로고
    • System identification through simulated evolution: A machine learning approach to modeling
    • Needham Heights Ginn, MA
    • DB Fogel 1991 System identification through simulated evolution: A machine learning approach to modeling Needham Heights Ginn, MA
    • (1991)
    • Fogel, D.B.1
  • 5
    • 0002472452 scopus 로고
    • Genetic algorithms and the optimal allocation of trials
    • 10.1137/0202009
    • Holland JL (1973) Genetic algorithms and the optimal allocation of trials. SIAM J Comput 2(2):88-105 10.1137/0202009
    • (1973) SIAM J. Comput. , vol.2 , Issue.2 , pp. 88-105
    • Holland, J.L.1
  • 6
    • 0003463297 scopus 로고
    • Adaptation in natural and artificial systems
    • University of Michigan Press Ann Arbor
    • JL Holland 1975 Adaptation in natural and artificial systems University of Michigan Press Ann Arbor
    • (1975)
    • Holland, J.L.1
  • 7
    • 0003735261 scopus 로고    scopus 로고
    • Genetic algorithm and engineering design
    • Wiley New York
    • M Gen R Cheng 1997 Genetic algorithm and engineering design Wiley New York
    • (1997)
    • Gen, M.1    Cheng, R.2
  • 9
    • 0000743347 scopus 로고
    • Training feed forward neural networks using Genetic algorithms
    • IJCAI-11
    • Montana D, Davis L (1989) Training feed forward neural networks using Genetic algorithms. In: 11th joint international conference on AI. IJCAI-11, pp 762-767
    • (1989) 11th Joint International Conference on AI , pp. 762-767
    • Montana, D.1    Davis, L.2
  • 11
    • 0001420440 scopus 로고
    • The evolution of connectivity: Pruning neural networks using genetic algorithms
    • Washington
    • Whitley D, Bogart C (1990) The evolution of connectivity: Pruning neural networks using genetic algorithms. In: Proceedings of IJCNN-90, Washington
    • (1990) Proceedings of IJCNN-90
    • Whitley, D.1    Bogart, C.2
  • 12
    • 0005021990 scopus 로고
    • Optimizing small neural networks using a distributed genetic algorithm
    • Washington
    • Whitley D, Starkwerther T (1990) Optimizing small neural networks using a distributed genetic algorithm. In: Proceedings of IJCNN-90, Washington
    • (1990) Proceedings of IJCNN-90
    • Whitley, D.1    Starkwerther, T.2
  • 13
    • 84982464075 scopus 로고
    • Empirical studies on the speed of convergence of neural networks training using genetic algorithms
    • Kitano H (1990) Empirical studies on the speed of convergence of neural networks training using genetic algorithms. In: Proceedings of the eighth national conference on AI, pp 789-795
    • (1990) Proceedings of the Eighth National Conference on AI , pp. 789-795
    • Kitano, H.1
  • 15
    • 0028336556 scopus 로고
    • Genetic evolution of the topology of weight distribution of neural networks
    • 10.1109/72.265959
    • Maniezzo V (1994) Genetic evolution of the topology of weight distribution of neural networks. IEEE trans Neural Networks 5(1):39-53 10.1109/72.265959
    • (1994) IEEE Trans. Neural. Networks , vol.5 , Issue.1 , pp. 39-53
    • Maniezzo, V.1
  • 17
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • 10.1109/5.784219
    • Yao Xin (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423-1447 10.1109/5.784219
    • (1999) Proc. IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 18
    • 0005058531 scopus 로고
    • Neural network weight selection using genetic algorithms
    • S Khebbal, S Goonatilake (eds) Wiley New York
    • DJ Montana 1995 Neural network weight selection using genetic algorithms. In S Khebbal, S Goonatilake (eds) Intelligent hybrid systems Wiley New York
    • (1995) Intelligent Hybrid Systems
    • Montana, D.J.1
  • 20
    • 28444459849 scopus 로고
    • Using genetic search to exploit the emerging behaviour of neural networks
    • Forrest S (ed)
    • Schaffer JD, Caruana RA, Eshelman LJ (1990) Using genetic search to exploit the emerging behaviour of neural networks. In: Forrest S (ed) Emergent computation, pp 102-112
    • (1990) Emergent Computation , pp. 102-112
    • Schaffer, J.D.1    Caruana, R.A.2    Eshelman, L.J.3
  • 22
    • 28444494683 scopus 로고
    • Asymmetric neural networks and structure design by genetic algorithms
    • Deutsches Electron-Synchrotron
    • Bornholdt S, Graudenz D (1991) Asymmetric neural networks and structure design by genetic algorithms, Deutsches Electron-Synchrotron
    • (1991)
    • Bornholdt, S.1    Graudenz, D.2
  • 25
    • 0025477595 scopus 로고
    • Genetic algorithms and neural networks: Optimizing connections and connectivity
    • 10.1016/0167-8191(90)90086-O
    • Whitley D, Starkwerther T, Bogart C (1990) Genetic algorithms and neural networks: Optimizing connections and connectivity. Parallel Comput 14(3):347-361 10.1016/0167-8191(90)90086-O
    • (1990) Parallel Comput. , vol.14 , Issue.3 , pp. 347-361
    • Whitley, D.1    Starkwerther, T.2    Bogart, C.3
  • 26
    • 0002279798 scopus 로고
    • Evolving networks: Using the genetic algorithm with connectionist learning
    • Belew RK, McInerney J, Schraudolph NN (1992) Evolving networks: Using the genetic algorithm with connectionist learning. Artif Life II, pp 511-547
    • (1992) Artif. Life II , pp. 511-547
    • Belew, R.K.1    McInerney, J.2    Schraudolph, N.N.3
  • 28
    • 11244257946 scopus 로고    scopus 로고
    • Neural networks, fuzzy logic and genetic algorithms: Synthesis and applications
    • Prentice Hall India
    • S Rajasekaran GA Vijayalakshmi Pai 2003 Neural networks, fuzzy logic and genetic algorithms: Synthesis and applications Prentice Hall India
    • (2003)
    • Rajasekaran, S.1    Vijayalakshmi Pai, G.A.2
  • 31
    • 0026626840 scopus 로고
    • Evolving neural network controllers for unstable systems
    • Wieland AP (1991) Evolving neural network controllers for unstable systems. IEEE joint conference on neural networks, pp 667-673
    • (1991) IEEE Joint Conference on Neural Networks , pp. 667-673
    • Wieland, A.P.1
  • 34
    • 0003722376 scopus 로고
    • Genetic algorithm in search, optimization and machine learning
    • Addison Wesley California
    • D Goldberg 1988 Genetic algorithm in search, optimization and machine learning Addison Wesley California
    • (1988)
    • Goldberg, D.1
  • 35
    • 0001653536 scopus 로고
    • An analysis of multi-point crossover
    • GJE Rawlins (ed) Morgan Kaufmann California
    • WM Spears KA De Jong 1990 An analysis of multi-point crossover. In GJE Rawlins (ed) Foundations of genetic algorithms Morgan Kaufmann California pp 310-315
    • (1990) Foundations of Genetic Algorithms , pp. 310-315
    • Spears, W.M.1    De Jong, K.A.2
  • 37
    • 0027683141 scopus 로고
    • Training product unit neural networks with genetic algorithms
    • 10.1109/64.236478
    • Janson DJ, Frenzel JF (1993) Training product unit neural networks with genetic algorithms. IEEE Expert 8:26-33 10.1109/64.236478
    • (1993) IEEE Expert. , vol.8 , pp. 26-33
    • Janson, D.J.1    Frenzel, J.F.2
  • 38
    • 0026486054 scopus 로고
    • Evidence of hyperplanes in the genetic learning of neural networks
    • 10.1007/BF00198482
    • Menczer F, Parisi D (1992) Evidence of hyperplanes in the genetic learning of neural networks. Biol Cybern 66:283-289 10.1007/BF00198482
    • (1992) Biol. Cybern. , vol.66 , pp. 283-289
    • Menczer, F.1    Parisi, D.2
  • 39
    • 0002089210 scopus 로고
    • A new interpretation of schema notation that overturns the binary encoding constraint
    • Schaffer JD (ed) Morgan Kaufmann, San Fransisco
    • Antonisse J (1989) A new interpretation of schema notation that overturns the binary encoding constraint. In: Schaffer JD (ed), Proceedings of 3rd international conference genetic algorithms and their applications. Morgan Kaufmann, San Fransisco, pp 86-91
    • (1989) Proceedings of 3rd International Conference Genetic Algorithms and Their Applications , pp. 86-91
    • Antonisse, J.1
  • 41
    • 0029324927 scopus 로고
    • Alternative neural network training methods
    • 10.1109/64.393138
    • Porto VW, Fogel DB, Fogel LJ (1995) Alternative neural network training methods. IEEE Expert 10:16-22 10.1109/64.393138
    • (1995) IEEE Expert. , vol.10 , pp. 16-22
    • Porto, V.W.1    Fogel, D.B.2    Fogel, L.J.3
  • 42
    • 0029326731 scopus 로고
    • Evolving neural control systems
    • 10.1109/64.393139
    • Saravanan N, Fogel DB (1995) Evolving neural control systems. IEEE Expert 10:23-27 10.1109/64.393139
    • (1995) IEEE Expert. , vol.10 , pp. 23-27
    • Saravanan, N.1    Fogel, D.B.2
  • 46
    • 0000293377 scopus 로고
    • Backpropagation learning for multi-layer feedforward neural networks using the conjugate gradient method
    • 10.1142/S0129065791000261
    • Johansson EM, Dowla FU, Goodman DM (1991) Backpropagation learning for multi-layer feedforward neural networks using the conjugate gradient method. Int J Neural Syst 2(4):291-301 10.1142/S0129065791000261
    • (1991) Int. J. Neural. Syst. , vol.2 , Issue.4 , pp. 291-301
    • Johansson, E.M.1    Dowla, F.U.2    Goodman, D.M.3
  • 49
    • 0035035711 scopus 로고    scopus 로고
    • A neural network model for the uplift capacity of suction caissons
    • 10.1016/S0266-352X(00)00033-1
    • Rahman MS, Wang J, Deng W, Carter JP (2001) A neural network model for the uplift capacity of suction caissons. Comput Geotech 28:269-287 10.1016/S0266-352X(00)00033-1
    • (2001) Comput. Geotech. , vol.28 , pp. 269-287
    • Rahman, M.S.1    Wang, J.2    Deng, W.3    Carter, J.P.4
  • 51
    • 0027035960 scopus 로고
    • Training multi-layered neural networks by replacing the least fit hidden neurons
    • Prados DL (1992) Training multi-layered neural networks by replacing the least fit hidden neurons. In: Proceedings of the IEEE SOTHEAST-CON 92, 2:634-637
    • (1992) Proceedings of the IEEE SOTHEAST-CON 92 , vol.2 , pp. 634-637
    • Prados, D.L.1
  • 52
    • 0031999703 scopus 로고    scopus 로고
    • Towards global optimization of neural networks: A comparison of the genetic algorithm and backpropagation
    • 10.1016/S0167-9236(97)00040-7
    • Sexton RS, Dorsey RE, Johnson JD (1998) Towards global optimization of neural networks: A comparison of the genetic algorithm and backpropagation. Decision Support Syst 22(2):171-185 10.1016/ S0167-9236(97)00040-7
    • (1998) Decision Support Syst. , vol.22 , Issue.2 , pp. 171-185
    • Sexton, R.S.1    Dorsey, R.E.2    Johnson, J.D.3
  • 53
    • 0003487601 scopus 로고
    • Neural networks for pattern recognition
    • Clarendon Press Oxford
    • CM Bishop 1995 Neural networks for pattern recognition Clarendon Press Oxford
    • (1995)
    • Bishop, C.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.