메뉴 건너뛰기




Volumn , Issue , 2005, Pages 1707-1712

A robust generalization of ISOMAP for new data

Author keywords

Geodesic distances; ISOMAP; Manifold; Nonlinear dimensionality reduction

Indexed keywords

ALGORITHMS; DATA ACQUISITION; EIGENVALUES AND EIGENFUNCTIONS; EMBEDDED SYSTEMS; MATHEMATICAL MODELS;

EID: 28444454040     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (11)

References (10)
  • 3
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • December
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, Vol. 290, pp. 2319-2323, December 2000.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 5
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • December
    • S. T. Rowei and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science, Vol. 290, pp. 2323-2326, December 2000.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Rowei, S.T.1    Saul, L.K.2
  • 6
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation, Vol.15, pp. 1373-1396, 2003.
    • (2003) Neural Computation , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 8
    • 0037059052 scopus 로고    scopus 로고
    • A self-organizing principle for learning nonlinear manifolds
    • D. K. Agrafiotis and Huafeng Xu, A self-organizing principle for learning nonlinear manifolds, PNAS, pp. 15869-15872, 2002.
    • (2002) PNAS , pp. 15869-15872
    • Agrafiotis, D.K.1    Xu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.