-
1
-
-
0023363116
-
Nonlinear beam kinematics by decomposition of the rotation tensor
-
D. Danielson D. Hodges Nonlinear beam kinematics by decomposition of the rotation tensor ASME J. Appl. Mech. 54 1987 258-262
-
(1987)
ASME J. Appl. Mech.
, vol.54
, pp. 258-262
-
-
Danielson, D.1
Hodges, D.2
-
2
-
-
0023964748
-
On the dynamics of rods undergoing large motions - A geometrically exact approach
-
J. Simo L. Vu-Quoc On the dynamics of rods undergoing large motions - a geometrically exact approach Comput. Methods Appl. Mech. Engrg. 66 1988 125-161
-
(1988)
Comput. Methods Appl. Mech. Engrg.
, vol.66
, pp. 125-161
-
-
Simo, J.1
Vu-Quoc, L.2
-
3
-
-
0030130357
-
Large-deformation analysis of flexible beams
-
P. Pai A. Palazotto Large-deformation analysis of flexible beams Int. J. Solids Struct. 33 1996 1335-1353
-
(1996)
Int. J. Solids Struct.
, vol.33
, pp. 1335-1353
-
-
Pai, P.1
Palazotto, A.2
-
4
-
-
0030109245
-
Geometrically non-linear beam element for dynamics simulation of multibody systems
-
I. Sharf Geometrically non-linear beam element for dynamics simulation of multibody systems Int. J. Numer. Methods Engrg. 39 1996 763-786
-
(1996)
Int. J. Numer. Methods Engrg.
, vol.39
, pp. 763-786
-
-
Sharf, I.1
-
5
-
-
0038959155
-
Finite element theory for curved and twisted beams based on exact solutions for three-dimensional solids, part 1: Beam concept and geometrically exact nonlinear formulation
-
E. Petrov M. Géradin Finite element theory for curved and twisted beams based on exact solutions for three-dimensional solids, part 1: Beam concept and geometrically exact nonlinear formulation Comput. Methods Appl. Mech. Engrg. 165 1998 43-92
-
(1998)
Comput. Methods Appl. Mech. Engrg.
, vol.165
, pp. 43-92
-
-
Petrov, E.1
Géradin, M.2
-
7
-
-
0035919572
-
Dynamic response and instability of frame structures
-
Q. Xue J.L. Meek Dynamic response and instability of frame structures Comput. Methods Appl. Mech. Engrg. 190 2001 5233-5242
-
(2001)
Comput. Methods Appl. Mech. Engrg.
, vol.190
, pp. 5233-5242
-
-
Xue, Q.1
Meek, J.L.2
-
8
-
-
0020704493
-
On the inclusion principle for the hierarchical finite element method
-
L. Meirovitch H. Baruh On the inclusion principle for the hierarchical finite element method Int. J. Numer. Methods Engrg. 19 1983 281-291
-
(1983)
Int. J. Numer. Methods Engrg.
, vol.19
, pp. 281-291
-
-
Meirovitch, L.1
Baruh, H.2
-
10
-
-
0000334285
-
Non-linear vibration of beams with internal resonance by the hierarchical finite-element method
-
P. Ribeiro M. Petyt Non-linear vibration of beams with internal resonance by the hierarchical finite-element method J. Sound Vibrat. 224 4 1999 591-624
-
(1999)
J. Sound Vibrat.
, vol.224
, Issue.4
, pp. 591-624
-
-
Ribeiro, P.1
Petyt, M.2
-
13
-
-
0035855788
-
Hierarchical finite element analyses of geometrically non-linear vibrations of beams and plane frames
-
P. Ribeiro Hierarchical finite element analyses of geometrically non-linear vibrations of beams and plane frames J. Sound Vibrat. 2 246 2001 225-244
-
(2001)
J. Sound Vibrat.
, vol.2
, Issue.246
, pp. 225-244
-
-
Ribeiro, P.1
-
19
-
-
0021758053
-
The effects of large vibration amplitudes on the fundamental mode shape of a clamped-clamped uniform beam
-
M. Bennouna R.G. White The effects of large vibration amplitudes on the fundamental mode shape of a clamped-clamped uniform beam J. Sound Vibrat. 96 3 1984 309-331
-
(1984)
J. Sound Vibrat.
, vol.96
, Issue.3
, pp. 309-331
-
-
Bennouna, M.1
White, R.G.2
|