메뉴 건너뛰기




Volumn 195, Issue 9-12, 2006, Pages 905-924

Beam p-version finite element for geometrically non-linear vibrations in space

Author keywords

3D beam; Hierarchical finite element; Non linear; P version; Vibrations

Indexed keywords

BEAMS AND GIRDERS; BENDING (DEFORMATION); EQUATIONS OF MOTION; STIFFNESS MATRIX; TENSORS; TORSIONAL STRESS; VIBRATIONS (MECHANICAL);

EID: 28444448028     PISSN: 00457825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cma.2005.02.008     Document Type: Article
Times cited : (14)

References (19)
  • 1
    • 0023363116 scopus 로고
    • Nonlinear beam kinematics by decomposition of the rotation tensor
    • D. Danielson D. Hodges Nonlinear beam kinematics by decomposition of the rotation tensor ASME J. Appl. Mech. 54 1987 258-262
    • (1987) ASME J. Appl. Mech. , vol.54 , pp. 258-262
    • Danielson, D.1    Hodges, D.2
  • 2
    • 0023964748 scopus 로고
    • On the dynamics of rods undergoing large motions - A geometrically exact approach
    • J. Simo L. Vu-Quoc On the dynamics of rods undergoing large motions - a geometrically exact approach Comput. Methods Appl. Mech. Engrg. 66 1988 125-161
    • (1988) Comput. Methods Appl. Mech. Engrg. , vol.66 , pp. 125-161
    • Simo, J.1    Vu-Quoc, L.2
  • 3
    • 0030130357 scopus 로고    scopus 로고
    • Large-deformation analysis of flexible beams
    • P. Pai A. Palazotto Large-deformation analysis of flexible beams Int. J. Solids Struct. 33 1996 1335-1353
    • (1996) Int. J. Solids Struct. , vol.33 , pp. 1335-1353
    • Pai, P.1    Palazotto, A.2
  • 4
    • 0030109245 scopus 로고    scopus 로고
    • Geometrically non-linear beam element for dynamics simulation of multibody systems
    • I. Sharf Geometrically non-linear beam element for dynamics simulation of multibody systems Int. J. Numer. Methods Engrg. 39 1996 763-786
    • (1996) Int. J. Numer. Methods Engrg. , vol.39 , pp. 763-786
    • Sharf, I.1
  • 5
    • 0038959155 scopus 로고    scopus 로고
    • Finite element theory for curved and twisted beams based on exact solutions for three-dimensional solids, part 1: Beam concept and geometrically exact nonlinear formulation
    • E. Petrov M. Géradin Finite element theory for curved and twisted beams based on exact solutions for three-dimensional solids, part 1: Beam concept and geometrically exact nonlinear formulation Comput. Methods Appl. Mech. Engrg. 165 1998 43-92
    • (1998) Comput. Methods Appl. Mech. Engrg. , vol.165 , pp. 43-92
    • Petrov, E.1    Géradin, M.2
  • 7
    • 0035919572 scopus 로고    scopus 로고
    • Dynamic response and instability of frame structures
    • Q. Xue J.L. Meek Dynamic response and instability of frame structures Comput. Methods Appl. Mech. Engrg. 190 2001 5233-5242
    • (2001) Comput. Methods Appl. Mech. Engrg. , vol.190 , pp. 5233-5242
    • Xue, Q.1    Meek, J.L.2
  • 8
    • 0020704493 scopus 로고
    • On the inclusion principle for the hierarchical finite element method
    • L. Meirovitch H. Baruh On the inclusion principle for the hierarchical finite element method Int. J. Numer. Methods Engrg. 19 1983 281-291
    • (1983) Int. J. Numer. Methods Engrg. , vol.19 , pp. 281-291
    • Meirovitch, L.1    Baruh, H.2
  • 10
    • 0000334285 scopus 로고    scopus 로고
    • Non-linear vibration of beams with internal resonance by the hierarchical finite-element method
    • P. Ribeiro M. Petyt Non-linear vibration of beams with internal resonance by the hierarchical finite-element method J. Sound Vibrat. 224 4 1999 591-624
    • (1999) J. Sound Vibrat. , vol.224 , Issue.4 , pp. 591-624
    • Ribeiro, P.1    Petyt, M.2
  • 13
    • 0035855788 scopus 로고    scopus 로고
    • Hierarchical finite element analyses of geometrically non-linear vibrations of beams and plane frames
    • P. Ribeiro Hierarchical finite element analyses of geometrically non-linear vibrations of beams and plane frames J. Sound Vibrat. 2 246 2001 225-244
    • (2001) J. Sound Vibrat. , vol.2 , Issue.246 , pp. 225-244
    • Ribeiro, P.1
  • 19
    • 0021758053 scopus 로고
    • The effects of large vibration amplitudes on the fundamental mode shape of a clamped-clamped uniform beam
    • M. Bennouna R.G. White The effects of large vibration amplitudes on the fundamental mode shape of a clamped-clamped uniform beam J. Sound Vibrat. 96 3 1984 309-331
    • (1984) J. Sound Vibrat. , vol.96 , Issue.3 , pp. 309-331
    • Bennouna, M.1    White, R.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.