메뉴 건너뛰기




Volumn 55, Issue 1, 2006, Pages 21-26

A note on the value function for constrained control problems

Author keywords

Differential inclusions; Dynamic programming; Generalized derivatives; Normal maximum principle; State constraints; Value function

Indexed keywords

CONSTRAINT THEORY; DYNAMIC PROGRAMMING; FUNCTIONS; MAXIMUM PRINCIPLE; SET THEORY;

EID: 28444444096     PISSN: 01676911     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sysconle.2005.04.012     Document Type: Article
Times cited : (3)

References (13)
  • 3
    • 0026254228 scopus 로고
    • Some characterizations of optimal trajectories in control theory
    • P. Cannarsa, and H. Frankowska Some characterizations of optimal trajectories in control theory SIAM J. Control Optim. 22 1991 1322 1347
    • (1991) SIAM J. Control Optim. , vol.22 , pp. 1322-1347
    • Cannarsa, P.1    Frankowska, H.2
  • 4
    • 14344262598 scopus 로고    scopus 로고
    • The connection between the maximum principle and the value function for optimal control problems under state constraints
    • 14-17 December Paradise Island, Bahamas
    • A. Cernea, H. Frankowska, The connection between the maximum principle and the value function for optimal control problems under state constraints, Proceedings of the 43rd IEEE Conference on Decision and Control, 14-17 December 2004, Paradise Island, Bahamas, pp. 893-898.
    • (2004) Proceedings of the 43rd IEEE Conference on Decision and Control , pp. 893-898
    • Cernea, A.1    Frankowska, H.2
  • 5
    • 85060509651 scopus 로고    scopus 로고
    • A connection between the maximum principle and dynamic programming for constrained control problems
    • to appear
    • A. Cernea, H. Frankowska, A connection between the maximum principle and dynamic programming for constrained control problems, SIAM J. Control Optim., to appear.
    • SIAM J. Control Optim.
    • Cernea, A.1    Frankowska, H.2
  • 6
    • 19244367902 scopus 로고
    • The relationship between the maximum principle and dynamic programming
    • F.H. Clarke, and R.B. Vinter The relationship between the maximum principle and dynamic programming SIAM J. Control Optim. 25 1987 1291 1311
    • (1987) SIAM J. Control Optim. , vol.25 , pp. 1291-1311
    • Clarke, F.H.1    Vinter, R.B.2
  • 7
    • 0023090297 scopus 로고
    • The maximum principle for an optimal solution to a differential inclusion with end points constraints
    • H. Frankowska The maximum principle for an optimal solution to a differential inclusion with end points constraints SIAM J. Control Optim. 25 1987 145 157
    • (1987) SIAM J. Control Optim. , vol.25 , pp. 145-157
    • Frankowska, H.1
  • 8
    • 0001391958 scopus 로고
    • Optimal trajectories associated with a solution of the contingent Hamilton-Jacobi equation
    • H. Frankowska Optimal trajectories associated with a solution of the contingent Hamilton-Jacobi equation Appl. Math. Optim. 19 1989 291 311
    • (1989) Appl. Math. Optim. , vol.19 , pp. 291-311
    • Frankowska, H.1
  • 9
    • 33747704221 scopus 로고    scopus 로고
    • Regularity of minimizers and of adjoint states for optimal control problems under state constraints
    • to appear
    • H. Frankowska, Regularity of minimizers and of adjoint states for optimal control problems under state constraints, J. Convex Anal., to appear.
    • J. Convex Anal.
    • Frankowska, H.1
  • 10
    • 0034148320 scopus 로고    scopus 로고
    • Filippov's and Filippov-Wazewski's theorems on closed domains
    • H. Frankowska, and F. Rampazzo Filippov's and Filippov-Wazewski's theorems on closed domains J. Differential Equations 161 2000 449 478
    • (2000) J. Differential Equations , vol.161 , pp. 449-478
    • Frankowska, H.1    Rampazzo, F.2
  • 11
    • 38249008087 scopus 로고
    • A proof of Pontriagin's minimum principle using dynamic programming
    • Ş. Miricǎ A proof of Pontriagin's minimum principle using dynamic programming J. Math. Anal. Appl. 170 1992 501 512
    • (1992) J. Math. Anal. Appl. , vol.170 , pp. 501-512
    • Miricǎ, Ş.1
  • 13
    • 0025432736 scopus 로고
    • Maximum principle, dynamic programming and their connection in deterministic control
    • X.Y. Zhou Maximum principle, dynamic programming and their connection in deterministic control J. Optim. Theory Appl. 65 1990 363 373
    • (1990) J. Optim. Theory Appl. , vol.65 , pp. 363-373
    • Zhou, X.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.