-
1
-
-
1642442768
-
Wavelet-Galerkin method for the free vibrations of an elastic cable carrying an attached mass
-
M. Al-Qassab, and S. Nair Wavelet-Galerkin method for the free vibrations of an elastic cable carrying an attached mass J. Sound Vibrat. 270 2004 191 206
-
(2004)
J. Sound Vibrat.
, vol.270
, pp. 191-206
-
-
Al-Qassab, M.1
Nair, S.2
-
3
-
-
84867941153
-
Convergence of a nonlinear wavelet algorithm for the solution of PDEs
-
S. Bertoluzza, and M. Verani Convergence of a nonlinear wavelet algorithm for the solution of PDEs Appl. Math. Lett. 16 2003 113 118
-
(2003)
Appl. Math. Lett.
, vol.16
, pp. 113-118
-
-
Bertoluzza, S.1
Verani, M.2
-
4
-
-
0026995365
-
On the representation of operators in bases of compactly supported wavelets
-
G. Beylkin On the representation of operators in bases of compactly supported wavelets SIMA J. Numer. Anal. 6 1992 1716 1740
-
(1992)
SIMA J. Numer. Anal.
, vol.6
, pp. 1716-1740
-
-
Beylkin, G.1
-
6
-
-
0002577806
-
Wavelets and other based for fast numerical linear algebra
-
C. Chui Academic Press New York
-
K.A. Bradley Wavelets and other based for fast numerical linear algebra C. Chui Wavelets: a Tutorial in Theory and Applications 1992 Academic Press New York 200 250
-
(1992)
Wavelets: A Tutorial in Theory and Applications
, pp. 200-250
-
-
Bradley, K.A.1
-
8
-
-
0030242748
-
The computation of wavelet-Galerkin approximation on a bounded interval
-
M.Q. Chen, C. Hwang, and Y.P. Shih The computation of wavelet-Galerkin approximation on a bounded interval Internat. J. Numer. Methods Eng. 39 1996 2921 2944
-
(1996)
Internat. J. Numer. Methods Eng.
, vol.39
, pp. 2921-2944
-
-
Chen, M.Q.1
Hwang, C.2
Shih, Y.P.3
-
10
-
-
0033892582
-
Numerical performance of wavelets for PDEs: The multi-scale finite element
-
M.A. Christon, and D.W. Roach Numerical performance of wavelets for PDEs: the multi-scale finite element Comput. Mech. 25 2000 230 244
-
(2000)
Comput. Mech.
, vol.25
, pp. 230-244
-
-
Christon, M.A.1
Roach, D.W.2
-
12
-
-
0035280516
-
Wavelet methods for PDEs - Some recent developments
-
W. Dahmen Wavelet methods for PDEs - some recent developments J. Comput. Appl. Math. 128 2001 133 185
-
(2001)
J. Comput. Appl. Math.
, vol.128
, pp. 133-185
-
-
Dahmen, W.1
-
13
-
-
0027574359
-
Using the refinement equation for evaluating integrals of wavelets
-
W. Dahmen, and C. Micchelli Using the refinement equation for evaluating integrals of wavelets SIAM J. Numer. Anal. 30 1993 507 537
-
(1993)
SIAM J. Numer. Anal.
, vol.30
, pp. 507-537
-
-
Dahmen, W.1
Micchelli, C.2
-
14
-
-
3042939241
-
Nonlinear functionals of wavelet expansions - Adaptive reconstruction and fast evaluation
-
W. Dahmen, R. Schneider, and Y. Xu Nonlinear functionals of wavelet expansions - adaptive reconstruction and fast evaluation Numer. Math. 86 2000 21 48
-
(2000)
Numer. Math.
, vol.86
, pp. 21-48
-
-
Dahmen, W.1
Schneider, R.2
Xu, Y.3
-
15
-
-
84990575058
-
Orthonormal bases of compactly supported wavelets
-
I. Daubechies Orthonormal bases of compactly supported wavelets Commun. Pure Appl. Math. 41 1988 909 996
-
(1988)
Commun. Pure Appl. Math.
, vol.41
, pp. 909-996
-
-
Daubechies, I.1
-
16
-
-
0035501068
-
Wavelet-Galerkin method for solving parabolic equations in finite domains
-
S.L. Ho, and S.Y. Yang Wavelet-Galerkin method for solving parabolic equations in finite domains Finite Elements Anal. Design 37 2001 1023 1037
-
(2001)
Finite Elements Anal. Design
, vol.37
, pp. 1023-1037
-
-
Ho, S.L.1
Yang, S.Y.2
-
17
-
-
0345874460
-
Multiscale Galerkin method using interpolation wavelets for two-dimensional elliptic problems in general domains
-
G. Jang, J. Kim, and Y. Kim Multiscale Galerkin method using interpolation wavelets for two-dimensional elliptic problems in general domains Internat. J. Numer. Methods Eng. 59 2004 225 253
-
(2004)
Internat. J. Numer. Methods Eng.
, vol.59
, pp. 225-253
-
-
Jang, G.1
Kim, J.2
Kim, Y.3
-
18
-
-
0010887193
-
Orthonormal wavelets analysis of operators and applications to numerical analysis
-
C. Chui Academic Press New York
-
S. Jaffard, and P. Laurencot Orthonormal wavelets analysis of operators and applications to numerical analysis C. Chui Wavelets: a tutorial in theory and applications 1992 Academic Press New York 543 601
-
(1992)
Wavelets: A Tutorial in Theory and Applications
, pp. 543-601
-
-
Jaffard, S.1
Laurencot, P.2
-
20
-
-
0029342725
-
A class of finite element methods based on orthonormal, compactly supported wavelets
-
J. Ko, A.J. Kurdila, and M.S. Pilant A class of finite element methods based on orthonormal, compactly supported wavelets Comput. Mech. 16 1995 235 244
-
(1995)
Comput. Mech.
, vol.16
, pp. 235-244
-
-
Ko, J.1
Kurdila, A.J.2
Pilant, M.S.3
-
21
-
-
0031554575
-
Triangular wavelet based finite elements via multivalued scaling equations
-
J. Ko, A.J. Kurdila, and M.S. Pilant Triangular wavelet based finite elements via multivalued scaling equations Comput. Methods Appl. Mechanics Eng. 146 1997 1 17
-
(1997)
Comput. Methods Appl. Mechanics Eng.
, vol.146
, pp. 1-17
-
-
Ko, J.1
Kurdila, A.J.2
Pilant, M.S.3
-
22
-
-
28244434844
-
Detection of crack location and size in structures using wavelet finite element methods
-
in press
-
B. Li, X.F. Chen, Z.J. He, Detection of crack location and size in structures using wavelet finite element methods, J. Sound Vibration, in press.
-
J. Sound Vibration
-
-
Li, B.1
Chen, X.F.2
He, Z.J.3
-
23
-
-
0035476210
-
Connection coefficients on an interval and wavelet solutions of Burgers equation
-
E.B. Lin, and X. Zhou Connection coefficients on an interval and wavelet solutions of Burgers equation J. Comput. Appl. Math. 135 2001 63 78
-
(2001)
J. Comput. Appl. Math.
, vol.135
, pp. 63-78
-
-
Lin, E.B.1
Zhou, X.2
-
24
-
-
0037702901
-
A study of the construction and application of a Daubechies wavelet-based beam element
-
J.X. Ma, J.J. Xue, S.J. Yang, and Z.J. He A study of the construction and application of a Daubechies wavelet-based beam element Finite Elements Anal. Design 39 2003 965 975
-
(2003)
Finite Elements Anal. Design
, vol.39
, pp. 965-975
-
-
Ma, J.X.1
Xue, J.J.2
Yang, S.J.3
He, Z.J.4
-
25
-
-
0024700097
-
A theory for multiresolution signal decomposition: The wavelet representation
-
S.G. Mallat A theory for multiresolution signal decomposition the wavelet representation IEEE Trans. Pattern Anal. Machine Intel. 11 1989 674 693
-
(1989)
IEEE Trans. Pattern Anal. Machine Intel.
, vol.11
, pp. 674-693
-
-
Mallat, S.G.1
-
26
-
-
0032364927
-
Orthonormal wavelet bases adapted for partial differential equations with boundary conditions
-
P. Monasse, and V. Perrier Orthonormal wavelet bases adapted for partial differential equations with boundary conditions SIAM J. Math. Anal. 29 1998 1040 1065
-
(1998)
SIAM J. Math. Anal.
, vol.29
, pp. 1040-1065
-
-
Monasse, P.1
Perrier, V.2
-
27
-
-
77957107532
-
The Wavelet-like methods in the design of efficient multilevel preconditioners for elliptic PDEs
-
W. Dahmen Academic Press San Diego
-
P.S. Vassilevski, and J.P. Wang The Wavelet-like methods in the design of efficient multilevel preconditioners for elliptic PDEs W. Dahmen Mutiscale Wavelet Methods for PDEs 1997 Academic Press San Diego 59 105
-
(1997)
Mutiscale Wavelet Methods for PDEs
, pp. 59-105
-
-
Vassilevski, P.S.1
Wang, J.P.2
-
28
-
-
0346724545
-
A wavelet-Galerkin scheme for the phase field model of microstructural evolution of materials
-
D. Wang, and J. Pan A wavelet-Galerkin scheme for the phase field model of microstructural evolution of materials Comput. Mater. Sci. 29 2004 221 242
-
(2004)
Comput. Mater. Sci.
, vol.29
, pp. 221-242
-
-
Wang, D.1
Pan, J.2
-
30
-
-
0034217697
-
Wavelet-Galerkin method for computations of electromagnetic fields-computation of connection coefficients
-
S.Y. Yang, and G.Z. Ni Wavelet-Galerkin method for computations of electromagnetic fields-computation of connection coefficients IEEE Trans. Magnetics 36 2000 644 648
-
(2000)
IEEE Trans. Magnetics
, vol.36
, pp. 644-648
-
-
Yang, S.Y.1
Ni, G.Z.2
|