메뉴 건너뛰기




Volumn 24, Issue 23, 2005, Pages 3645-3662

Bayesian neural networks for bivariate binary data: An application to prostate cancer study

Author keywords

Bayesian prediction; Bivariate logistics regression; Feedforward neural network; Gene expression microarrays; Margin positivity; Markov chain Monte Carlo; Seminal vesicle positivity

Indexed keywords

PROSTATE SPECIFIC ANTIGEN;

EID: 28244435110     PISSN: 02776715     EISSN: None     Source Type: Journal    
DOI: 10.1002/sim.2214     Document Type: Article
Times cited : (18)

References (21)
  • 5
    • 0003752277 scopus 로고
    • Technical Report 101, Department of Biostatistics, University of Washington, Seattle
    • Palmgren J. Regression models for bivariate binary responses. Technical Report 101, Department of Biostatistics, University of Washington, Seattle, 1989.
    • (1989) Regression Models for Bivariate Binary Responses
    • Palmgren, J.1
  • 6
    • 0023021371 scopus 로고
    • Global cross ration models for bivariate discrete ordered responses
    • Dale JR. Global cross ration models for bivariate discrete ordered responses. Biometrics 1986; 42:909-917.
    • (1986) Biometrics , vol.42 , pp. 909-917
    • Dale, J.R.1
  • 8
    • 84972539015 scopus 로고
    • Neural networks: A review from a statistical perspective
    • (with discussion)
    • Cheng B, Titterington DM. Neural networks: a review from a statistical perspective (with discussion). Statistical Science 1994; 9:2-54.
    • (1994) Statistical Science , vol.9 , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 9
    • 0001224911 scopus 로고    scopus 로고
    • Feedforward neural networks for nonparametric regression
    • Dey D, Müller P, Sinha D (eds). Springer: New York
    • Rios Insua D, Müller P. Feedforward neural networks for nonparametric regression. In Practical Nonparametric and Semiparametric Bayesian Statistics, Dey D, Müller P, Sinha D (eds). Springer: New York, 1998; 181-191.
    • (1998) Practical Nonparametric and Semiparametric Bayesian Statistics , pp. 181-191
    • Rios Insua, D.1    Müller, P.2
  • 10
    • 0024861871 scopus 로고
    • Approximation by superposition of sigmoidal functions
    • Cybenko G. Approximation by superposition of sigmoidal functions. Mathematics of Control Systems and Signals 1989; 2:303-314.
    • (1989) Mathematics of Control Systems and Signals , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 12
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backprop networks
    • Mackay DJC. A practical Bayesian framework for backprop networks. Neural Computation 1992; 4:448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • Mackay, D.J.C.1
  • 15
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks WR, Wild P. Adaptive rejection sampling for Gibbs sampling. Applied Statistics 1992; 41:337-348.
    • (1992) Applied Statistics , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 16
    • 32344446687 scopus 로고
    • Understanding the Metropolis-Hastings algorithm
    • Chib S, Greenberg E. Understanding the Metropolis-Hastings algorithm. The American Statistician 1995; 49:327-335.
    • (1995) The American Statistician , vol.49 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 17
    • 0000051645 scopus 로고    scopus 로고
    • Updating schemes, correlation structures, blocking and parameterization for the Gibbs sampler
    • Roberts GO, Sahu SK. Updating schemes, correlation structures, blocking and parameterization for the Gibbs sampler. Journal of the Royal Statistical Society, Series B 1997; 59:291-317.
    • (1997) Journal of the Royal Statistical Society, Series B , vol.59 , pp. 291-317
    • Roberts, G.O.1    Sahu, S.K.2
  • 18
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • (with discussion)
    • Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences (with discussion). Statistical Science 1992; 7:457-511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 21
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumours using gene expression data
    • Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumours using gene expression data. Journal of the American Statistical Association 2002; 97(457):77-87.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.