메뉴 건너뛰기




Volumn 229, Issue 2, 2005, Pages 424-461

Vanishing theorems on Riemannian manifolds, and geometric applications

Author keywords

Harmonic maps; Isolation results; Submanifolds; Vanishing and Liouville theorems

Indexed keywords


EID: 28044433014     PISSN: 00221236     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jfa.2005.05.007     Document Type: Article
Times cited : (48)

References (40)
  • 1
    • 0004342148 scopus 로고    scopus 로고
    • The compactification of a minimal submanifold in Euclidean space by the Gauss map
    • preprint
    • M. Anderson, The compactification of a minimal submanifold in Euclidean space by the Gauss map, preprint.
    • Anderson, M.1
  • 4
    • 51249177809 scopus 로고
    • A note on Bochner type theorems for complete manifolds
    • P. Bérard A note on Bochner type theorems for complete manifolds Manuscripta Math. 69 3 1990 261-266
    • (1990) Manuscripta Math. , vol.69 , Issue.3 , pp. 261-266
    • Bérard, P.1
  • 5
    • 0041069653 scopus 로고
    • Remarques sur l'equations de J. Simons
    • Differential Geometry (A Symposium in Honor of M. do Carmo on his 60th Birthday) Longman Science and Technology, Harlow
    • P. Berard, Remarques sur l'equations de J. Simons, Differential Geometry (A Symposium in Honor of M. do Carmo on his 60th Birthday), Pitman Monographs Surveys on Pure and Applied Mathematics, vol. 52, Longman Science and Technology, Harlow, 1991, pp. 47-57.
    • (1991) Pitman Monographs Surveys on Pure and Applied Mathematics , vol.52 , pp. 47-57
    • Berard, P.1
  • 7
    • 34250245407 scopus 로고
    • Les variétés de dimension 4à signature non nulle dont la courbure est harmonique sont d'Einstein
    • J.P. Bourguignon Les variétés de dimension 4à signature non nulle dont la courbure est harmonique sont d'Einstein Invent. Math. 63 2 1981 263-286
    • (1981) Invent. Math. , vol.63 , Issue.2 , pp. 263-286
    • Bourguignon, J.P.1
  • 8
    • 21944455286 scopus 로고    scopus 로고
    • Non existence and uniqueness of positive solutions of Yamabe type equations on non positively curved manifolds
    • B. Bianchini M. Rigoli Non existence and uniqueness of positive solutions of Yamabe type equations on non positively curved manifolds Trans. Amer. Math. Soc. 349 1997 4753-4774
    • (1997) Trans. Amer. Math. Soc. , vol.349 , pp. 4753-4774
    • Bianchini, B.1    Rigoli, M.2
  • 9
    • 0000536514 scopus 로고    scopus 로고
    • Positive solutions of Yamabe-type equations on the Heisemberg group
    • L. Brandolini M. Rigoli A.G. Setti Positive solutions of Yamabe-type equations on the Heisemberg group Duke Math. J. 91 1998 241-296
    • (1998) Duke Math. J. , vol.91 , pp. 241-296
    • Brandolini, L.1    Rigoli, M.2    Setti, A.G.3
  • 10
    • 0002113447 scopus 로고    scopus 로고
    • Positive solutions of Yamabe type equations on complete manifolds and applications
    • L. Brandolini M. Rigoli A.G. Setti Positive solutions of Yamabe type equations on complete manifolds and applications J. Funct. Anal. 160 1998 176-222
    • (1998) J. Funct. Anal. , vol.160 , pp. 176-222
    • Brandolini, L.1    Rigoli, M.2    Setti, A.G.3
  • 11
    • 0040348557 scopus 로고    scopus 로고
    • 2-Cohomologie et inégalités de Sobolev
    • 2-Cohomologie et inégalités de Sobolev Math. Ann. 314 1999 614-639
    • (1999) Math. Ann. , vol.314 , pp. 614-639
    • Carron, J.1
  • 12
    • 0001336733 scopus 로고
    • 2-cohomologie
    • 2-cohomologie Duke Math. J. 95 1988 343-373
    • (1988) Duke Math. J. , vol.95 , pp. 343-373
    • Carron, J.1
  • 15
    • 84980189206 scopus 로고
    • Differential equations on Riemannian manifolds and their geometric applications
    • S.Y. Cheng S.T. Yau Differential equations on Riemannian manifolds and their geometric applications Comm. Pure Appl. Math. XXVIII 1975 333-354
    • (1975) Comm. Pure Appl. Math. , vol.28 , pp. 333-354
    • Cheng, S.Y.1    Yau, S.T.2
  • 16
    • 0001133825 scopus 로고
    • 2-cohomology of infinite coverings
    • 2-cohomology of infinite coverings Topology 16 2 1977 157-165
    • (1977) Topology , vol.16 , Issue.2 , pp. 157-165
    • Dodziuk, J.1
  • 17
    • 0003335976 scopus 로고
    • Selected topics in harmonic maps
    • Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI
    • J. Eells, L. Lemaire, Selected topics in harmonic maps, CBMS Regional Conference Series in Mathematics, vol. 50. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1983. v+85pp.
    • (1983) CBMS Regional Conference Series in Mathematics , vol.50
    • Eells, J.1    Lemaire, L.2
  • 19
    • 0000362154 scopus 로고
    • On complete minimal surfaces with finite Morse index in three manifolds
    • D. Fischer-Colbrie On complete minimal surfaces with finite Morse index in three manifolds Invent. Math. 82 1985 121-132
    • (1985) Invent. Math. , vol.82 , pp. 121-132
    • Fischer-Colbrie, D.1
  • 20
    • 84980187204 scopus 로고
    • The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature
    • D. Fischer-Colbrie R. Schoen The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature Comm. Pure Appl. Math. XXXIII 1980 199-211
    • (1980) Comm. Pure Appl. Math. , vol.33 , pp. 199-211
    • Fischer-Colbrie, D.1    Schoen, R.2
  • 21
    • 0003283911 scopus 로고
    • Multiple integrals in the calculus of variations and nonlinear elliptic systems
    • M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. Math. Studies 105 (1983).
    • (1983) Ann. Math. Studies , vol.105
    • Giaquinta, M.1
  • 23
    • 0003228562 scopus 로고    scopus 로고
    • Sobolev Spaces on Riemannian Manifolds
    • Springer, Berlin
    • E. Hebey, Sobolev Spaces on Riemannian Manifolds, Lecture Notes in Mathematics, vol. 1635, Springer, Berlin, 1996.
    • (1996) Lecture Notes in Mathematics , vol.1635
    • Hebey, E.1
  • 24
    • 84980186088 scopus 로고
    • Sobolev and isoperimetric inequalities for Riemannian submanifolds
    • D. Hoffman J. Spruck Sobolev and isoperimetric inequalities for Riemannian submanifolds Comm. Pure Appl. Math. 27 1974 715-727
    • (1974) Comm. Pure Appl. Math. , vol.27 , pp. 715-727
    • Hoffman, D.1    Spruck, J.2
  • 25
    • 0002943709 scopus 로고
    • Uniqueness and stability of harmonic maps and their Jacobi fields
    • W. Jäger H. Kaul Uniqueness and stability of harmonic maps and their Jacobi fields Manuscripta Math. 28 1979 269-291
    • (1979) Manuscripta Math. , vol.28 , pp. 269-291
    • Jäger, W.1    Kaul, H.2
  • 26
    • 0040460276 scopus 로고
    • p and mean value properties of subharmonic functions on Riemannian manifolds
    • p and mean value properties of subharmonic functions on Riemannian manifolds Acta Math. 153 1984 279-301
    • (1984) Acta Math. , vol.153 , pp. 279-301
    • Li, P.1    Schoen, R.2
  • 27
    • 84972517072 scopus 로고
    • An upper bound to the spectrum of Δ on a manifold of negative curvature
    • H.P. McKean An upper bound to the spectrum of Δ on a manifold of negative curvature J. Differential Geometry 4 1970 359-366
    • (1970) J. Differential Geometry , vol.4 , pp. 359-366
    • McKean, H.P.1
  • 28
    • 84972514202 scopus 로고
    • Positive solutions of elliptic equations
    • W.F. Moss J. Pieprbrink Positive solutions of elliptic equations Pacific J. Math 75 1978 219-226
    • (1978) Pacific J. Math. , vol.75 , pp. 219-226
    • Moss, W.F.1    Pieprbrink, J.2
  • 29
  • 30
    • 14544272267 scopus 로고    scopus 로고
    • Maximum principle on Riemannian manifolds and applications
    • S. Pigola, M. Rigoli, A.G. Setti, Maximum principle on Riemannian manifolds and applications, Mem. AMS 174 (822).
    • Mem. AMS , vol.174 , Issue.822
    • Pigola, S.1    Rigoli, M.2    Setti, A.G.3
  • 31
    • 1142264315 scopus 로고    scopus 로고
    • Volume growth, "a priori" estimates, and geometric applications
    • S. Pigola M. Rigoli A.G. Setti Volume growth, "a priori" estimates, and geometric applications Geom. Funct. Anal. 13 6 2003 1302-1328
    • (2003) Geom. Funct. Anal. , vol.13 , Issue.6 , pp. 1302-1328
    • Pigola, S.1    Rigoli, M.2    Setti, A.G.3
  • 32
    • 0034349724 scopus 로고    scopus 로고
    • Energy estimates and Liouville theorems for harmonic maps
    • M. Rigoli A.G. Setti Energy estimates and Liouville theorems for harmonic maps Internat. J. Math. 11 3 2000 413-448
    • (2000) Internat. J. Math. , vol.11 , Issue.3 , pp. 413-448
    • Rigoli, M.1    Setti, A.G.2
  • 33
    • 0040433355 scopus 로고    scopus 로고
    • Liouville-type theorems for φ-subharmonic functions
    • M. Rigoli A.G. Setti Liouville-type theorems for φ-subharmonic functions Rev. Mat. Iberoamericana 17 2001 471-520
    • (2001) Rev. Mat. Iberoamericana , vol.17 , pp. 471-520
    • Rigoli, M.1    Setti, A.G.2
  • 35
    • 51249188982 scopus 로고
    • Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature
    • R. Schoen S.T. Yau Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature Comment. Math. Helv. 51 3 1976 333-341
    • (1976) Comment. Math. Helv. , vol.51 , Issue.3 , pp. 333-341
    • Schoen, R.1    Yau, S.T.2
  • 38
    • 33846445540 scopus 로고
    • Regularity of a more general class of quasilinear elliptic equations
    • P. Tolksdorf Regularity of a more general class of quasilinear elliptic equations J. Differential Equations 51 1984 126-150
    • (1984) J. Differential Equations , vol.51 , pp. 126-150
    • Tolksdorf, P.1
  • 39
    • 84966210385 scopus 로고
    • Finiteness of index and total scalar curvature for minimal hypersurfaces
    • J. Tysk Finiteness of index and total scalar curvature for minimal hypersurfaces Proc. Amer. Math. Soc. 105 2 1989 429-435
    • (1989) Proc. Amer. Math. Soc. , vol.105 , Issue.2 , pp. 429-435
    • Tysk, J.1
  • 40
    • 0003295337 scopus 로고
    • The Bochner technique in differential geometry
    • i-xii and
    • H.H. Wu, The Bochner technique in differential geometry, Math. Rep. 3(2) (1988) i-xii and 289-538.
    • (1988) Math. Rep. , vol.3 , Issue.2 , pp. 289-538
    • Wu, H.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.