메뉴 건너뛰기




Volumn 73, Issue 2, 2005, Pages 121-139

Power of latent growth modeling for detecting linear growth: Number of measurements and comparison with other analytic approaches

Author keywords

Dependent t test; Latent growth modeling; Monte Carlo; Repeated measures ANOVA; Statistical power

Indexed keywords


EID: 27944446376     PISSN: 00220973     EISSN: 19400683     Source Type: Journal    
DOI: 10.3200/JEXE.73.2.121-139     Document Type: Article
Times cited : (48)

References (13)
  • 3
    • 0001886394 scopus 로고    scopus 로고
    • A latent curve framework for the study of developmental trajectories in adolescent substance abuse
    • J. S. Rose, L. Chassin, C. C. Presson, & S. J. Sherman (Eds.), Mahwah, NJ: Erlbaum
    • Curran, P. J. (2000). A latent curve framework for the study of developmental trajectories in adolescent substance abuse. In J. S. Rose, L. Chassin, C. C. Presson, & S. J. Sherman (Eds.), Multivariate applications in substance use research: New methods for new questions (pp. 1-42). Mahwah, NJ: Erlbaum.
    • (2000) Multivariate Applications in Substance Use Research: New Methods for New Questions , pp. 1-42
    • Curran, P.J.1
  • 6
    • 0035538790 scopus 로고    scopus 로고
    • The effect of parental involvement on high school students’ academic achievement: A growth modeling analysis
    • Fan, X. (2001). The effect of parental involvement on high school students’ academic achievement: A growth modeling analysis. Journal of Experimental Education, 70, 27-61.
    • (2001) Journal of Experimental Education , vol.70 , pp. 27-61
    • Fan, X.1
  • 7
    • 18444408338 scopus 로고    scopus 로고
    • Power of latent growth modeling for detecting group differences in linear growth trajectory parameters
    • Fan, X. (2003). Power of latent growth modeling for detecting group differences in linear growth trajectory parameters. Structural Equation Modeling, 10, 380-400.
    • (2003) Structural Equation Modeling , vol.10 , pp. 380-400
    • Fan, X.1
  • 8
    • 0001968833 scopus 로고    scopus 로고
    • Multilevel analyses of grouped and longitudinal data
    • T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Mahwah, NJ: Erlbaum
    • Hox, J. J. (2000). Multilevel analyses of grouped and longitudinal data. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multilevel data (pp. 15-32). Mahwah, NJ: Erlbaum.
    • (2000) Modeling Longitudinal and Multilevel Data , pp. 15-32
    • Hox, J.J.1
  • 9
    • 0000830193 scopus 로고
    • Sample and population score matrices and sample correlation matrices from an arbitrary population correlation matrix
    • Kaiser, H. F., & Dickman, K. (1962). Sample and population score matrices and sample correlation matrices from an arbitrary population correlation matrix. Psychometrika, 27, 179-182.
    • (1962) Psychometrika , vol.27 , pp. 179-182
    • Kaiser, H.F.1    Dickman, K.2
  • 10
    • 0002681375 scopus 로고    scopus 로고
    • An introduction to latent growth models for developmental data analysis
    • T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Mahwah, NJ: Erlbaum
    • McArdle, J. J., & Bell, R. Q. (2000). An introduction to latent growth models for developmental data analysis. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multilevel data (pp. 69-108). Mahwah, NJ: Erlbaum.
    • (2000) Modeling Longitudinal and Multilevel Data , pp. 69-108
    • McArdle, J.J.1    Bell, R.Q.2
  • 11
    • 0000963321 scopus 로고    scopus 로고
    • General growth modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation
    • Muthén, B., & Curran, P. (1997). General growth modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation. Psychological Methods, 2, 371-402.
    • (1997) Psychological Methods , vol.2 , pp. 371-402
    • Muthén, B.1    Curran, P.2
  • 12
    • 0032251946 scopus 로고    scopus 로고
    • Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models
    • Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics, 24, 323-355.
    • (1998) Journal of Educational and Behavioral Statistics , vol.24 , pp. 323-355
    • Singer, J.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.