메뉴 건너뛰기




Volumn 114, Issue 3, 2005, Pages

Comparing the predictive performance of neural networks with ordinary kriging in a bauxite deposit

Author keywords

Bauxite deposit; Kriging; Neural network

Indexed keywords

ALUMINA; BAUXITE DEPOSITS; EXPLORATORY BOREHOLES; GENETIC ALGORITHMS; PERFORMANCE; SILICA;

EID: 27844590713     PISSN: 14749009     EISSN: None     Source Type: Journal    
DOI: 10.1179/037178405X53980     Document Type: Article
Times cited : (33)

References (21)
  • 2
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources application
    • G. J. BOWDEN, H. R. MAIER and G. C. DANDY: 'Optimal division of data for neural network models in water resources application," Water Resources Res., 2002, 38, 1-11.
    • (2002) Water Resources Res. , vol.38 , pp. 1-11
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 3
    • 0347535221 scopus 로고
    • Key issues for successful neural network applications: An application in geology
    • P. J. Braspenning, F. Thuijsman and A. J. M. M. Weijters eds.
    • H. R. A. CARDON and R. V. HOOGSTRATEN: 'Key issues for successful neural network applications: an application in geology', (P. J. Braspenning, F. Thuijsman and A. J. M. M. Weijters eds.), Artificial neural networks: an introduction to ANN theory and practice, 1995, 235-245.
    • (1995) Artificial Neural Networks: An Introduction to ANN Theory and Practice , pp. 235-245
    • Cardon, H.R.A.1    Hoogstraten, R.V.2
  • 5
  • 6
    • 33746777089 scopus 로고    scopus 로고
    • Genetic algorithms in search, optimization, and machine learning
    • D. E. GOLDBERG: 'Genetic algorithms in search, optimization, and machine learning', Pearson Education Asia, 2000, 1-412.
    • (2000) Pearson Education Asia , pp. 1-412
    • Goldberg, D.E.1
  • 8
    • 0025798413 scopus 로고
    • Artificial neural networks: An emerging technique to model and control mineral processing plants
    • SME Preprint No. 91-148
    • D. HODOUIN, J. THIBAULT and F. FLAMENT: 'Artificial neural networks: an emerging technique to model and control mineral processing plants', Proc. SME Annual Meeting, SME Preprint No. 91-148, 1991, 1-10.
    • (1991) Proc. SME Annual Meeting , pp. 1-10
    • Hodouin, D.1    Thibault, J.2    Flament, F.3
  • 10
    • 27844567351 scopus 로고    scopus 로고
    • Neural network-based estimation of principal metal contents in the Hokuroku District, Northern Japan, for exploring kuroko-type deposits
    • K. KOIKE, S. MATSUDA, T. SUZUKI and M. OHMI: 'Neural network-based estimation of principal metal contents in the Hokuroku District, Northern Japan, for exploring kuroko-type deposits', Natural Resources Res., 2002, 11, 135-156.
    • (2002) Natural Resources Res. , vol.11 , pp. 135-156
    • Koike, K.1    Matsuda, S.2    Suzuki, T.3    Ohmi, M.4
  • 11
    • 27844538007 scopus 로고    scopus 로고
    • Characterizing content distributions of impurities in a limestone mine using a feedforward neural network
    • K. KOIKE and S. MATSUDA: 'Characterizing content distributions of impurities in a limestone mine using a feedforward neural network'. Natural Resources Res., 2003,12, 209-223.
    • (2003) Natural Resources Res. , vol.12 , pp. 209-223
    • Koike, K.1    Matsuda, S.2
  • 12
    • 0026469884 scopus 로고
    • Identifying probable failure modes for underground openings using a neural network
    • C. LEE and R. STERLING: 'Identifying probable failure modes for underground openings using a neural network [Abstract]', Int. J. Rock Mechanics Min Sci Geomechanics, 1992, 29, 49-67.
    • (1992) Int. J. Rock Mechanics Min Sci Geomechanics , vol.29 , pp. 49-67
    • Lee, C.1    Sterling, R.2
  • 14
    • 0029502802 scopus 로고
    • Practical issues of geostatistical reserve estimation in the mining industry
    • G. PAN: 'Practical issues of geostatistical reserve estimation in the mining industry', CIM Bull., 1995, 993, 31-37.
    • (1995) CIM Bull. , vol.993 , pp. 31-37
    • Pan, G.1
  • 15
    • 0345432964 scopus 로고
    • Monitoring and prediction of longwall instability using artificial intelligence techniques
    • Preprint No. 95-147
    • D. W. PARK, D. DEB, Y M. JIANG and R. L. SANFORD: 'Monitoring and prediction of longwall instability using artificial intelligence techniques', Proc. SME, Preprint No. 95-147, 1995, 1-8.
    • (1995) Proc. SME , pp. 1-8
    • Park, D.W.1    Deb, D.2    Jiang, Y.M.3    Sanford, R.L.4
  • 16
    • 0018681334 scopus 로고
    • Kriging, logarithmic kriging, and conditional expectation: Comparison of theory with actual results
    • Tucson, Arizona
    • J. M. RENDU: 'Kriging, logarithmic kriging, and conditional expectation: comparison of theory with actual results', Proc. 16th APCOM Symposium, Tucson, Arizona, 1979, 199-212.
    • (1979) Proc. 16th APCOM Symposium , pp. 199-212
    • Rendu, J.M.1
  • 17
    • 0028193610 scopus 로고
    • Characterization of aquifer properties using artificial neural networks: Neural kriging
    • D. M. RIZZO and D. E. DOUGHETRY: 'Characterization of aquifer properties using artificial neural networks: neural kriging', Water Resources Res., 1994, 30, 483-497.
    • (1994) Water Resources Res. , vol.30 , pp. 483-497
    • Rizzo, D.M.1    Doughetry, D.E.2
  • 18
    • 0028174533 scopus 로고
    • Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling
    • L. L. ROGERS and F. U. DOWLA: 'Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling', Water Resources Res., 1994, 30, 483-497.
    • (1994) Water Resources Res. , vol.30 , pp. 483-497
    • Rogers, L.L.1    Dowla, F.U.2
  • 19
    • 0027578284 scopus 로고
    • Reserve estimation using neural network techniques
    • X. WU and Y. ZHOU: 'Reserve estimation using neural network techniques', Comput. Geosci., 1993, 19, 567-575.
    • (1993) Comput. Geosci. , vol.19 , pp. 567-575
    • Wu, X.1    Zhou, Y.2
  • 20
    • 0033081648 scopus 로고    scopus 로고
    • Artificial neural network application for a predictive task in mining
    • B. R. YAMA and G. T. LINEBERRY: Artificial neural network application for a predictive task in mining', Min. Eng., 1999, 51, 59-64.
    • (1999) Min. Eng. , vol.51 , pp. 59-64
    • Yama, B.R.1    Lineberry, G.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.