메뉴 건너뛰기




Volumn 40, Issue 2, 2005, Pages 151-177

Maximum likelihood analysis of nonlinear structural equation models with dichotomous variables

Author keywords

[No Author keywords available]

Indexed keywords


EID: 27844516595     PISSN: 00273171     EISSN: None     Source Type: Journal    
DOI: 10.1207/s15327906mbr4002_1     Document Type: Article
Times cited : (8)

References (44)
  • 1
    • 0034557673 scopus 로고    scopus 로고
    • Bayesian factor analysis for multilevel binary observations
    • Ansari, A., & Jedidi, K. (2000). Bayesian factor analysis for multilevel binary observations. Psychometrika, 65, 475-498.
    • (2000) Psychometrika , vol.65 , pp. 475-498
    • Ansari, A.1    Jedidi, K.2
  • 2
    • 0032329779 scopus 로고    scopus 로고
    • A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm
    • Arminger, G., & Muthén, B. O. (1998). A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm. Psychometrika, 63, 271-300.
    • (1998) Psychometrika , vol.63 , pp. 271-300
    • Arminger, G.1    Muthén, B.O.2
  • 3
    • 0000857692 scopus 로고
    • State versus action orientation and the theory of reasoned action: An application to coupon usage
    • Bagozzi, R. P., Baumgartner, H., & Yi, Y. (1992). State versus action orientation and the theory of reasoned action: An application to coupon usage. Journal of Consumer Research, 18, 505-517.
    • (1992) Journal of Consumer Research , vol.18 , pp. 505-517
    • Bagozzi, R.P.1    Baumgartner, H.2    Yi, Y.3
  • 5
    • 0010975415 scopus 로고
    • Marginal maximum likelihood estimation of item parameters: Application of an em algorithm
    • Bock, R. D., & Aitkin M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 37, 29-51.
    • (1981) Psychometrika , vol.37 , pp. 29-51
    • Bock, R.D.1    Aitkin, M.2
  • 6
    • 0030451789 scopus 로고    scopus 로고
    • High dimensional multivariate probit analysis
    • Bock, R. D., & Gibbons, R. D. (1996). High dimensional multivariate probit analysis. Biometrics, 52, 1183-1194.
    • (1996) Biometrics , vol.52 , pp. 1183-1194
    • Bock, R.D.1    Gibbons, R.D.2
  • 8
    • 0033475053 scopus 로고    scopus 로고
    • Maximum generalized linear model likelihoods with an automated Monte Carlo em algorithm
    • Booth, J. G., & Hobert, J. P. (1999). Maximum generalized linear model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society, Series B, 61, 265-285.
    • (1999) Journal of the Royal Statistical Society, Series B , vol.61 , pp. 265-285
    • Booth, J.G.1    Hobert, J.P.2
  • 9
    • 0001648095 scopus 로고
    • Robustness of statistical inference in factor analysis and related models
    • Browne, M. W. (1987). Robustness of statistical inference in factor analysis and related models. Biometrika, 74, 375-384.
    • (1987) Biometrika , vol.74 , pp. 375-384
    • Browne, M.W.1
  • 10
    • 0000911137 scopus 로고    scopus 로고
    • Analysis of multivariate probit models
    • Chib, S., & Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika, 85, 347-361.
    • (1998) Biometrika , vol.85 , pp. 347-361
    • Chib, S.1    Greenberg, E.2
  • 13
    • 0001582213 scopus 로고    scopus 로고
    • Inference and monitoring convergence
    • W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.). London: Chapman and Hall
    • Gelman, A. (1996). Inference and monitoring convergence. In W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.), Markov Chain Monte Carlo in practice (pp. 131-144). London: Chapman and Hall.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 131-144
    • Gelman, A.1
  • 14
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constant: From importance sampling to bridge sampling to path sampling
    • Gelman, A., & Meng, X. L. (1998). Simulating normalizing constant: From importance sampling to bridge sampling to path sampling. Statistical Science, 13, 163-185.
    • (1998) Statistical Science , vol.13 , pp. 163-185
    • Gelman, A.1    Meng, X.L.2
  • 15
    • 0000954353 scopus 로고    scopus 로고
    • Efficient metropolis jumping rules
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.). Oxford, UK: Oxford University Press
    • Gelman, A., Roberts, G. O., & Gilks, W. R. (1996). Efficient metropolis jumping rules. In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian statistics 5 (pp. 599-607). Oxford, UK: Oxford University Press.
    • (1996) Bayesian Statistics , vol.5 , pp. 599-607
    • Gelman, A.1    Roberts, G.O.2    Gilks, W.R.3
  • 17
    • 84972511893 scopus 로고
    • Practical Markov Chain Monte Carlo
    • Geyer, C. J. (1992). Practical Markov Chain Monte Carlo (with discussion). Statistical Science, 7, 473-511.
    • (1992) Statistical Science , vol.7 , pp. 473-511
    • Geyer, C.J.1
  • 18
    • 0032337233 scopus 로고    scopus 로고
    • Health service utilization and insurance coverage: A multivariate probit model
    • Gibbons, R. D., & Wilcox-Gök, V. (1998). Health service utilization and insurance coverage: A multivariate probit model. Journal of American Statistical Association, 93, 63-72.
    • (1998) Journal of American Statistical Association , vol.93 , pp. 63-72
    • Gibbons, R.D.1    Wilcox-Gök, V.2
  • 19
    • 0001178202 scopus 로고
    • A language and program for complex Bayesian modeling
    • Gilks, W. R., Thomas, A., & Spiegelhalter, D. J. (1994). A language and program for complex Bayesian modeling. Statisticians, 43, 169-177.
    • (1994) Statisticians , vol.43 , pp. 169-177
    • Gilks, W.R.1    Thomas, A.2    Spiegelhalter, D.J.3
  • 20
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov Chains and their application
    • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov Chains and their application. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 21
    • 11944261983 scopus 로고
    • Measurement error in the analysis of interaction effects between continuous predictors using multiple regression: Multiple indicator and structural equation approaches
    • Jaccard, J., & Wan, C. K. (1995). Measurement error in the analysis of interaction effects between continuous predictors using multiple regression: Multiple indicator and structural equation approaches. Psychological Bulletin, 117, 348-357.
    • (1995) Psychological Bulletin , vol.117 , pp. 348-357
    • Jaccard, J.1    Wan, C.K.2
  • 23
    • 0002382866 scopus 로고    scopus 로고
    • Nonlinear structural equation models: The Kenny-Judd Model with interaction effects
    • G. A. Marcoulides & R. E. Schumacker (Eds.). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
    • Jöreskog, K. G., & Yang, F. (1996). Nonlinear structural equation models: The Kenny-Judd Model with interaction effects. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling techniques (pp. 57-88). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
    • (1996) Advanced Structural Equation Modeling Techniques , pp. 57-88
    • Jöreskog, K.G.1    Yang, F.2
  • 25
    • 0000456985 scopus 로고
    • Estimating the nonlinear and interactive effects of latent variables
    • Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96, 201-210.
    • (1984) Psychological Bulletin , vol.96 , pp. 201-210
    • Kenny, D.A.1    Judd, C.M.2
  • 26
    • 0034867298 scopus 로고    scopus 로고
    • Maximum likelihood estimation of two-level latent variable models with mixed continuous and polytomous data
    • Lee, S. Y., & Shi, J. Q. (2001). Maximum likelihood estimation of two-level latent variable models with mixed continuous and polytomous data. Biometrics, 57, 787-794.
    • (2001) Biometrics , vol.57 , pp. 787-794
    • Lee, S.Y.1    Shi, J.Q.2
  • 27
    • 0035528598 scopus 로고    scopus 로고
    • Hypothesis testing and model comparison in two-level structural equation models
    • Lee, S. Y., & Song, X. Y. (2001). Hypothesis testing and model comparison in two-level structural equation models. Multivariate Behavioral Research, 36, 639-655.
    • (2001) Multivariate Behavioral Research , vol.36 , pp. 639-655
    • Lee, S.Y.1    Song, X.Y.2
  • 28
    • 0038457409 scopus 로고    scopus 로고
    • Bayesian model selection for mixtures of structural equation models with an unknown number of components
    • Lee, S. Y., & Song, X. Y. (2003a). Bayesian model selection for mixtures of structural equation models with an unknown number of components. British Journal of Mathematical and Statistical Psychology, 56, 145-165.
    • (2003) British Journal of Mathematical and Statistical Psychology , vol.56 , pp. 145-165
    • Lee, S.Y.1    Song, X.Y.2
  • 29
    • 0038810230 scopus 로고    scopus 로고
    • Model comparison of nonlinear structural equation models with fixed covariates
    • Lee, S. Y., & Song, X. Y. (2003b). Model comparison of nonlinear structural equation models with fixed covariates. Psychometrika, 68, 27-47.
    • (2003) Psychometrika , vol.68 , pp. 27-47
    • Lee, S.Y.1    Song, X.Y.2
  • 30
    • 3042735142 scopus 로고    scopus 로고
    • Comparison of approaches in estimating interaction and quadratic effects of latent variables
    • Lee, S. Y., Song, X. Y., & Poon, W. Y. (2004). Comparison of approaches in estimating interaction and quadratic effects of latent variables. Multivariate Behavioral Research, 39, 37-67.
    • (2004) Multivariate Behavioral Research , vol.39 , pp. 37-67
    • Lee, S.Y.1    Song, X.Y.2    Poon, W.Y.3
  • 31
    • 0035998148 scopus 로고    scopus 로고
    • Maximum likelihood estimation of nonlinear structural equation models
    • Lee, S. Y., & Zhu, H. T. (2002). Maximum likelihood estimation of nonlinear structural equation models. Psychometrika, 67, 189-210.
    • (2002) Psychometrika , vol.67 , pp. 189-210
    • Lee, S.Y.1    Zhu, H.T.2
  • 32
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using em algorithm
    • Louis, T. A. (1982). Finding the observed information matrix when using EM algorithm. Journal of the Royal Statistical Society, Series B, 44, 226-233.
    • (1982) Journal of the Royal Statistical Society, Series B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 33
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • Meng, X. L., & Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 80, 267-278.
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 34
    • 0030336223 scopus 로고    scopus 로고
    • Fitting full-information item factor models and an empirical investigation of bridge sampling
    • Meng, X. L., & Schilling, S. (1996). Fitting full-information item factor models and an empirical investigation of bridge sampling. Journal of the American Statistical Association, 91, 1254-1267.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 1254-1267
    • Meng, X.L.1    Schilling, S.2
  • 36
    • 0037514670 scopus 로고    scopus 로고
    • Comparison of methods for estimating and testing latent variable interactions
    • Moulder, B. C., & Algina, J. (2002). Comparison of methods for estimating and testing latent variable interactions. Structural Equation Modeling, 9, 1-19.
    • (2002) Structural Equation Modeling , vol.9 , pp. 1-19
    • Moulder, B.C.1    Algina, J.2
  • 37
    • 0002884680 scopus 로고
    • Bayesian model selection in structural equation models
    • K. A. Bollen & J. S. Long (Eds.). London: New Delhi
    • Raftery, A. E. (1993). Bayesian model selection in structural equation models. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 163-180). London: New Delhi.
    • (1993) Testing Structural Equation Models , pp. 163-180
    • Raftery, A.E.1
  • 38
    • 0000599677 scopus 로고    scopus 로고
    • Mixtures of distributions: Inference and estimation
    • W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.). London: Chapman and Hall
    • Robert, C. P. (1996). Mixtures of distributions: Inference and estimation. In W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.), Markov Chain Monte Carlo in practice (pp. 163-188). London: Chapman and Hall.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 163-188
    • Robert, C.P.1
  • 39
    • 0001098534 scopus 로고
    • EM and beyond
    • Rubin, D. B. (1991). EM and beyond. Psychometrika, 56, 241-254.
    • (1991) Psychometrika , vol.56 , pp. 241-254
    • Rubin, D.B.1
  • 40
  • 42
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association, 82, 528-550.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 43
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the em algorithm and the poor man's data augmentation algorithm
    • Wei, G. C. G., & Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm. Journal of the American Statistical Association, 85, 699-704.
    • (1990) Journal of the American Statistical Association , vol.85 , pp. 699-704
    • Wei, G.C.G.1    Tanner, M.A.2
  • 44
    • 0003830430 scopus 로고
    • Ann Arbor, MI: Inter-university Consortium for Political and Social Research
    • World Values Study Group. (1994). WORLD VALUES SURVEY, 1981-1984 AND 1990-1993. ICPSR version. Ann Arbor, MI: Inter-university Consortium for Political and Social Research.
    • (1994) World Values Survey, 1981-1984 and 1990-1993. ICPSR Version


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.