메뉴 건너뛰기




Volumn 8, Issue 3, 2005, Pages 287-291

Fatigue crack growth resistance and crack closure behavior in two aluminum alloys for aeronautical applications

Author keywords

Aeronautical applications; Aluminum alloys; Crack closure; Fatigue

Indexed keywords

AEROSPACE ENGINEERING; CRACK PROPAGATION; CRACKS; ELASTIC MODULI; FATIGUE OF MATERIALS; MATERIALS SCIENCE;

EID: 27844439950     PISSN: 15161439     EISSN: None     Source Type: Journal    
DOI: 10.1590/S1516-14392005000300011     Document Type: Article
Times cited : (13)

References (33)
  • 1
    • 0014809315 scopus 로고
    • Fatigue crack closure under cyclic tension
    • Elber W. Fatigue crack closure under cyclic tension. Engng Fract Mech. 1970; 2:37-45.
    • (1970) Engng Fract Mech. , vol.2 , pp. 37-45
    • Elber, W.1
  • 2
    • 0020178058 scopus 로고
    • A geometric model for fatigue crack closure induced by fracture surface morphology
    • Suresh S, Ritchie RO. A geometric model for fatigue crack closure induced by fracture surface morphology. Metall Trans. 1982; 13A: 1627-1631.
    • (1982) Metall Trans. , vol.13 A , pp. 1627-1631
    • Suresh, S.1    Ritchie, R.O.2
  • 3
    • 0021626988 scopus 로고
    • Propagation of short fatigue cracks
    • Suresh S, Ritchie RO. Propagation of short fatigue cracks. Intl Metals Rev. 1984; 29:445-476.
    • (1984) Intl Metals Rev. , vol.29 , pp. 445-476
    • Suresh, S.1    Ritchie, R.O.2
  • 5
    • 0020846174 scopus 로고
    • Crack deflection: Implications for the growth of long and short fatigue cracks
    • Suresh S. Crack deflection: implications for the growth of long and short fatigue cracks. Metall Trans. 1983; 14A:2375-2385.
    • (1983) Metall Trans. , vol.14 A , pp. 2375-2385
    • Suresh, S.1
  • 6
    • 0022015391 scopus 로고
    • Fatigue crack deflection and fracture surface contact: Micro-mechanical models
    • Suresh S. Fatigue crack deflection and fracture surface contact: micro-mechanical models. Metall Trans. 1985; 16A:249-260.
    • (1985) Metall Trans. , vol.16 A , pp. 249-260
    • Suresh, S.1
  • 8
    • 0027001253 scopus 로고
    • Fatigue of aluminum-lithium alloys
    • Rao KTV, Ritchie RO. Fatigue of aluminum-lithium alloys. Intl Mater Rev. 1992; 37:153-185.
    • (1992) Intl Mater Rev. , vol.37 , pp. 153-185
    • Rao, K.T.V.1    Ritchie, R.O.2
  • 11
    • 0006936144 scopus 로고    scopus 로고
    • Standard methods of tension testing wrought and cast aluminum and magnesium alloy products
    • ASTM B557M-01. Philadelphia, USA
    • Standard Methods of Tension Testing Wrought and Cast Aluminum and Magnesium Alloy Products. ASTM B557M-01. In: 2001 Annual Book of ASTM Standards. Philadelphia, USA.
    • 2001 Annual Book of ASTM Standards
  • 12
    • 0012906132 scopus 로고    scopus 로고
    • Standard test method for measurement of fatigue crack growth rates
    • ASTM E647-01. Philadelphia, USA
    • Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM E647-01. In: 2001 Annual Book of ASTM Standards. Philadelphia, USA.
    • 2001 Annual Book of ASTM Standards
  • 15
    • 0016494967 scopus 로고
    • Metallurgical factors affecting high-strength aluminum alloys production
    • Thompson DS. Metallurgical factors affecting high-strength aluminum alloys production. Metall Trans. 1975; 6A:671-683.
    • (1975) Metall Trans. , vol.6 A , pp. 671-683
    • Thompson, D.S.1
  • 16
    • 0024733356 scopus 로고
    • Mechanical properties of Al-Li alloys
    • Rao KTV, Ritchie RO. Mechanical properties of Al-Li alloys. Mater Sci Technol. 1989; 5:882-895.
    • (1989) Mater Sci Technol. , vol.5 , pp. 882-895
    • Rao, K.T.V.1    Ritchie, R.O.2
  • 17
    • 0003705486 scopus 로고
    • New York, USA: McGraw-Hill Book Co
    • Van der Voort GF. Metallography. New York, USA: McGraw-Hill Book Co; 1984. p. 195.
    • (1984) Metallography , pp. 195
    • Van Der Voort, G.F.1
  • 18
    • 0016494490 scopus 로고
    • Metallurgical factors affecting fracture toughness of aluminum alloys
    • Hahn GT, Rosenfield AR. Metallurgical factors affecting fracture toughness of aluminum alloys. Metall Trans. 1975; 6A:653-670.
    • (1975) Metall Trans. , vol.6 A , pp. 653-670
    • Hahn, G.T.1    Rosenfield, A.R.2
  • 20
    • 0041306798 scopus 로고
    • Application of fracture mechanics for selection of metallic structural materials
    • Metals Park, USA
    • Kaufman JG, Santner JJ. Application of Fracture Mechanics for Selection of Metallic Structural Materials. ASM (American Society for Metals & Materials); Metals Park, USA. 1982. p. 169-212.
    • (1982) ASM (American Society for Metals & Materials) , pp. 169-212
    • Kaufman, J.G.1    Santner, J.J.2
  • 21
    • 0022738821 scopus 로고
    • Fatigue crack growth and fracture toughness behavior of an Al-Li-Cu alloy
    • Jata KV, Starke EA. Fatigue crack growth and fracture toughness behavior of an Al-Li-Cu alloy. Metall Trans. 1986; 17A:1011-1026.
    • (1986) Metall Trans. , vol.17 A , pp. 1011-1026
    • Jata, K.V.1    Starke, E.A.2
  • 22
    • 0023289101 scopus 로고
    • Mechanisms governing cyclic fracture in a Al-Cu-Li alloy
    • Srivatsan TS, Coyne EJ. Mechanisms governing cyclic fracture in a Al-Cu-Li alloy. Mater Sci Technol. 1987; 3:130-138.
    • (1987) Mater Sci Technol. , vol.3 , pp. 130-138
    • Srivatsan, T.S.1    Coyne, E.J.2
  • 23
  • 24
    • 0020310982 scopus 로고
    • Influence of corrosion deposits on near-threshold fatigue crack growth behavior in 2XXX and 7XXX serie aluminum alloys
    • Vasudevan AK, Suresh S. Influence of corrosion deposits on near-threshold fatigue crack growth behavior in 2XXX and 7XXX serie aluminum alloys. Metall. Trans. 1982; 13A:2271-2280.
    • (1982) Metall. Trans. , vol.13 A , pp. 2271-2280
    • Vasudevan, A.K.1    Suresh, S.2
  • 26
    • 0023983927 scopus 로고
    • Fatigue crack propagation in aluminum-lithium alloy 2090
    • Rao KTV, Yu W, Ritchie RO, Fatigue crack propagation in aluminum-lithium alloy 2090. Metall Trans. 1988; 19A:549-561.
    • (1988) Metall Trans. , vol.19 A , pp. 549-561
    • Rao, K.T.V.1    Yu, W.2    Ritchie, R.O.3
  • 27
    • 0024680125 scopus 로고
    • Micromechanisms governing fatigue behavior of lithium containing aluminum alloys
    • Srivatsan TS, Coyne EJ. Micromechanisms governing fatigue behavior of lithium containing aluminum alloys. Mater Sci Technol. 1989; 5:548-555.
    • (1989) Mater Sci Technol. , vol.5 , pp. 548-555
    • Srivatsan, T.S.1    Coyne, E.J.2
  • 29
    • 0024735441 scopus 로고
    • Mechanical properties of Al-Li alloys
    • Rao KTV, Ritchie RO. Mechanical properties of Al-Li alloys. Mater Sci Technol. 1989; 5:896-907.
    • (1989) Mater Sci Technol. , vol.5 , pp. 896-907
    • Rao, K.T.V.1    Ritchie, R.O.2
  • 30
    • 0026079818 scopus 로고
    • The fatigue crack growth behavior of the Al-Cu-Li alloy weldalite 049
    • Blankenship CP, Starke EA. The fatigue crack growth behavior of the Al-Cu-Li alloy weldalite 049. Fat Fract Engng Mater Struct. 1991:14:103-114.
    • (1991) Fat Fract Engng Mater Struct. , vol.14 , pp. 103-114
    • Blankenship, C.P.1    Starke, E.A.2
  • 31
    • 0029137031 scopus 로고
    • Microstructure influence on the intrinsic fatigue properties of Ai-Li 8090 alloy
    • Park KJ, Park CG, Kim NJ, Lee CS. Microstructure influence on the intrinsic fatigue properties of Ai-Li 8090 alloy. Mater Sci Engng. 1995; A 190:99-108.
    • (1995) Mater Sci Engng. , vol.A 190 , pp. 99-108
    • Park, K.J.1    Park, C.G.2    Kim, N.J.3    Lee, C.S.4
  • 32
    • 0030267302 scopus 로고    scopus 로고
    • Precise determination of fatigue crack closure in Al alloys
    • Lee CS, Park CG, and Chang YW. Precise determination of fatigue crack closure in Al alloys. Mater Sci Engng. 1996; A216:131-138.
    • (1996) Mater Sci Engng. , vol.A216 , pp. 131-138
    • Lee, C.S.1    Park, C.G.2    Chang, Y.W.3
  • 33
    • 0030153178 scopus 로고    scopus 로고
    • Fatigue crack closure as a function of crack length in Al-Li alloys
    • Yung HY, Antolovich SD. Fatigue crack closure as a function of crack length in Al-Li alloys. Engng Fract Mech. 1996; 54:307-324.
    • (1996) Engng Fract Mech. , vol.54 , pp. 307-324
    • Yung, H.Y.1    Antolovich, S.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.