메뉴 건너뛰기




Volumn 17, Issue 4 SUPPL., 2005, Pages

Scientific methods to determine functional performance of prosthetic ankle-foot systems

Author keywords

[No Author keywords available]

Indexed keywords


EID: 27744578868     PISSN: 10408800     EISSN: None     Source Type: Journal    
DOI: 10.1097/00008526-200510001-00008     Document Type: Conference Paper
Times cited : (7)

References (75)
  • 1
    • 0030919974 scopus 로고    scopus 로고
    • Energy storage and release of prosthetic feet. Part 2: Subjective ratings of 2 energy-storing and 2 conventional feet, user choice of foot and deciding factor
    • Postema K, Hermens HJ, de Vries J, et al. Energy storage and release of prosthetic feet. Part 2: Subjective ratings of 2 energy-storing and 2 conventional feet, user choice of foot and deciding factor. Prosthet Orthot Int 1997;21(1):28-34.
    • (1997) Prosthet Orthot Int , vol.21 , Issue.1 , pp. 28-34
    • Postema, K.1    Hermens, H.J.2    De Vries, J.3
  • 2
    • 0034307496 scopus 로고    scopus 로고
    • Gait analysis and energy consumption of below-knee amputees wearing three different prosthetic feet
    • Huang GF, Chou YL, Su FC. Gait analysis and energy consumption of below-knee amputees wearing three different prosthetic feet. Gait Posture 2000;12(2):162-168.
    • (2000) Gait Posture , vol.12 , Issue.2 , pp. 162-168
    • Huang, G.F.1    Chou, Y.L.2    Su, F.C.3
  • 3
    • 0001917249 scopus 로고
    • Perception of walking difficulty by below-knee amputees using a conventional foot versus the Flex-Foot
    • MacFarlane PA, Nielsen DH, Shurr DG, Meier K. Perception of walking difficulty by below-knee amputees using a conventional foot versus the Flex-Foot. J Prosthet Orthot 1991;3(31):114-119.
    • (1991) J Prosthet Orthot , vol.3 , Issue.31 , pp. 114-119
    • MacFarlane, P.A.1    Nielsen, D.H.2    Shurr, D.G.3    Meier, K.4
  • 4
    • 0000866266 scopus 로고
    • Subjective and objective analysis of an energy-storing prosthetic foot
    • Menard MR, Murray DD. Subjective and objective analysis of an energy-storing prosthetic foot. J Prosthet Orthot 1989;1(4):220-230.
    • (1989) J Prosthet Orthot , vol.1 , Issue.4 , pp. 220-230
    • Menard, M.R.1    Murray, D.D.2
  • 5
    • 0027087048 scopus 로고
    • Functional evaluation by gait analysis of various ankle-foot assemblies used by below-knee amputees
    • Mizuno N, Aoyama T, Nakajima A, et al. Functional evaluation by gait analysis of various ankle-foot assemblies used by below-knee amputees. Prosthet Orthot Int 1992;16(3):174-182.
    • (1992) Prosthet Orthot Int , vol.16 , Issue.3 , pp. 174-182
    • Mizuno, N.1    Aoyama, T.2    Nakajima, A.3
  • 7
    • 0001630932 scopus 로고
    • Practical benefits of Flex-Foot in below-knee amputees
    • Alaranta H, Kinnunen A, Karkkainen M, et al. Practical benefits of Flex-Foot in below-knee amputees. J Prosthet Orthot 1991;3(4):179-181.
    • (1991) J Prosthet Orthot , vol.3 , Issue.4 , pp. 179-181
    • Alaranta, H.1    Kinnunen, A.2    Karkkainen, M.3
  • 8
    • 0019457910 scopus 로고
    • The assessment and description of amputee activity
    • Day HJ. The assessment and description of amputee activity. Prosthet Orthot Int 1981;5(1):23-28.
    • (1981) Prosthet Orthot Int , vol.5 , Issue.1 , pp. 23-28
    • Day, H.J.1
  • 9
    • 0036257770 scopus 로고    scopus 로고
    • The amputee mobility predictor: An instrument to assess determinants of the lower-limb amputee's ability to ambulate
    • Gailey RS, Roach KE, Applegate EB, et al. The amputee mobility predictor: an instrument to assess determinants of the lower-limb amputee's ability to ambulate. Arch Phys Med Rehabil 2002;83:613-627.
    • (2002) Arch Phys Med Rehabil , vol.83 , pp. 613-627
    • Gailey, R.S.1    Roach, K.E.2    Applegate, E.B.3
  • 11
    • 0031870474 scopus 로고    scopus 로고
    • Prosthesis evaluation questionnaire for persons with lower limb amputations: Assessing prosthesis-related quality of life
    • Legro MW, Reiber GD, Smith DG, et al. Prosthesis evaluation questionnaire for persons with lower limb amputations: assessing prosthesis-related quality of life. Arch Phys Med Rehabil 1998;79:931-938.
    • (1998) Arch Phys Med Rehabil , vol.79 , pp. 931-938
    • Legro, M.W.1    Reiber, G.D.2    Smith, D.G.3
  • 12
    • 0002477794 scopus 로고
    • Gait analysis and energy cost of below-knee amputees wearing six different prosthetic feet
    • Barth DG, Schumacher L, Thomas SS. Gait analysis and energy cost of below-knee amputees wearing six different prosthetic feet. J Prosthet Orthot 1992;4:63-75.
    • (1992) J Prosthet Orthot , vol.4 , pp. 63-75
    • Barth, D.G.1    Schumacher, L.2    Thomas, S.S.3
  • 13
    • 0028836982 scopus 로고
    • Bioenergetic comparison of a new energy-storing foot and SACH foot in traumatic below-knee vascular amputations
    • Casillas JM, Dulieu V, Cohen M, et al. Bioenergetic comparison of a new energy-storing foot and SACH foot in traumatic below-knee vascular amputations. Arch Phys Med Rehabil 1995;76:39-44.
    • (1995) Arch Phys Med Rehabil , vol.76 , pp. 39-44
    • Casillas, J.M.1    Dulieu, V.2    Cohen, M.3
  • 14
    • 0031438296 scopus 로고    scopus 로고
    • Optimisation of the prescription for trans-tibial (TT) amputees
    • Cortes A, Viosca E, Hoyos JV, et al. Optimisation of the prescription for trans-tibial (TT) amputees. Prosthet Orthot Int 1997;21:168-174.
    • (1997) Prosthet Orthot Int , vol.21 , pp. 168-174
    • Cortes, A.1    Viosca, E.2    Hoyos, J.V.3
  • 15
    • 0021601379 scopus 로고
    • Analysis of gait following below-knee amputation: A comparison of the SACH and single-axis foot
    • Culham EG, Peat M, Newell E. Analysis of gait following below-knee amputation: a comparison of the SACH and single-axis foot. Physiother Can 1984;36:237-242.
    • (1984) Physiother Can , vol.36 , pp. 237-242
    • Culham, E.G.1    Peat, M.2    Newell, E.3
  • 16
    • 0022577745 scopus 로고
    • Below-knee amputation: A comparison of the effect of the SACH foot and single-axis foot on electromyographic patterns during locomotion
    • Culham EG, Peat M, Newell E. Below-knee amputation: a comparison of the effect of the SACH foot and single-axis foot on electromyographic patterns during locomotion. Prosthet Orthot Int 1986;10:15-22.
    • (1986) Prosthet Orthot Int , vol.10 , pp. 15-22
    • Culham, E.G.1    Peat, M.2    Newell, E.3
  • 17
    • 0020586502 scopus 로고
    • A comparison of the SACH and single-axis foot in the gait of unilateral below-knee amputees
    • Doane NE, Holt LE. A comparison of the SACH and single-axis foot in the gait of unilateral below-knee amputees. Prosthet Orthot Int 1983;7:33-36.
    • (1983) Prosthet Orthot Int , vol.7 , pp. 33-36
    • Doane, N.E.1    Holt, L.E.2
  • 18
    • 0025824013 scopus 로고
    • Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking
    • Gitter A, Czerniecki JM, DeGroot DM. Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking. Am J Phys Med Rehabil 1991;70:142-148.
    • (1991) Am J Phys Med Rehabil , vol.70 , pp. 142-148
    • Gitter, A.1    Czerniecki, J.M.2    DeGroot, D.M.3
  • 20
    • 0032833766 scopus 로고    scopus 로고
    • Physiological measurements of walking and running in people with transtibial amputations with 3 different prostheses
    • Hsu MJ, Nielsen DH, Yack HJ, Shurr DG. Physiological measurements of walking and running in people with transtibial amputations with 3 different prostheses. J Orthop Sports Phys Ther 1999;29:526-533.
    • (1999) J Orthop Sports Phys Ther , vol.29 , pp. 526-533
    • Hsu, M.J.1    Nielsen, D.H.2    Yack, H.J.3    Shurr, D.G.4
  • 21
    • 0027482376 scopus 로고
    • Comprehensive analysis of energy storing prosthetic feet: Flex-Foot and Seattle Foot versus standard SACH foot
    • Lehmann JF, Price R, Boswell-Bessette S, et al. Comprehensive analysis of energy storing prosthetic feet: Flex-Foot and Seattle Foot versus standard SACH foot. Arch Phys Med Rehabil 1993;74:1225-1231.
    • (1993) Arch Phys Med Rehabil , vol.74 , pp. 1225-1231
    • Lehmann, J.F.1    Price, R.2    Boswell-Bessette, S.3
  • 22
    • 0027199104 scopus 로고
    • Comprehensive analysis of dynamic elastic response feet: Seattle Ankle/Lite Foot versus SACH foot
    • Lehmann JF, Price R, Boswell-Bessette S, et al. Comprehensive analysis of dynamic elastic response feet: Seattle Ankle/Lite Foot versus SACH foot. Arch Phys Med Rehabil 1993;74:853-861.
    • (1993) Arch Phys Med Rehabil , vol.74 , pp. 853-861
    • Lehmann, J.F.1    Price, R.2    Boswell-Bessette, S.3
  • 23
    • 0000841064 scopus 로고
    • Gait comparisons for below-knee amputees using a Flex-Foot versus a conventional prosthetic foot
    • MacFarlane PA, Nielsen DH, Shurr DG, Meier K. Gait comparisons for below-knee amputees using a Flex-Foot versus a conventional prosthetic foot. J Prosthet Orthot 1991;3:150-161.
    • (1991) J Prosthet Orthot , vol.3 , pp. 150-161
    • MacFarlane, P.A.1    Nielsen, D.H.2    Shurr, D.G.3    Meier, K.4
  • 24
    • 0031371754 scopus 로고    scopus 로고
    • Mechanical gait analysis of transfemoral amputees: SACH foot versus the Flex-Foot
    • MacFarlane PA, Nielsen DH, Shurr DG. Mechanical gait analysis of transfemoral amputees: SACH foot versus the Flex-Foot. J Prosthet Orthot 1997;9:144-151.
    • (1997) J Prosthet Orthot , vol.9 , pp. 144-151
    • MacFarlane, P.A.1    Nielsen, D.H.2    Shurr, D.G.3
  • 26
    • 84936909092 scopus 로고
    • Comparison of energy cost and gait efficiency during ambulation in below-knee amputees using different prosthetic feet
    • Nielsen DH, Shurr DG, Golden JC, Meier K. Comparison of energy cost and gait efficiency during ambulation in below-knee amputees using different prosthetic feet. J Prosthet Orthot 1988;1:24-31.
    • (1988) J Prosthet Orthot , vol.1 , pp. 24-31
    • Nielsen, D.H.1    Shurr, D.G.2    Golden, J.C.3    Meier, K.4
  • 27
    • 0031440840 scopus 로고    scopus 로고
    • Prosthetic weight acceptance mechanics in transtibial amputees wearing the Single Axis, Seattle Lite, and Flex-Foot
    • Perry J, Boyd LA, Rao SS, Mulroy SJ. Prosthetic weight acceptance mechanics in transtibial amputees wearing the Single Axis, Seattle Lite, and Flex-Foot. IEEE Trans Rehabil Eng 1997;5:283-289.
    • (1997) IEEE Trans Rehabil Eng , vol.5 , pp. 283-289
    • Perry, J.1    Boyd, L.A.2    Rao, S.S.3    Mulroy, S.J.4
  • 28
    • 0027364958 scopus 로고
    • Efficiency of dynamic elastic response prosthetic feet
    • Perry J, Shanfield S. Efficiency of dynamic elastic response prosthetic feet. J Rehabil Res Dev 1993;30:137-143.
    • (1993) J Rehabil Res Dev , vol.30 , pp. 137-143
    • Perry, J.1    Shanfield, S.2
  • 29
    • 0030996502 scopus 로고    scopus 로고
    • Energy storage and release of prosthetic feet. Part 1: Biomechanical analysis related to user benefits
    • Postema K, Hermens HJ, de Vries J, et al. Energy storage and release of prosthetic feet. Part 1: Biomechanical analysis related to user benefits. Prosthet Orthot Int 1997;21:17-27.
    • (1997) Prosthet Orthot Int , vol.21 , pp. 17-27
    • Postema, K.1    Hermens, H.J.2    De Vries, J.3
  • 30
    • 0028357145 scopus 로고
    • Influence of prosthetic foot design on sound limb loading in adults with unilateral below-knee amputations
    • Powers CM, Torburn L, Perry J, Ayyappa E. Influence of prosthetic foot design on sound limb loading in adults with unilateral below-knee amputations. Arch Phys Med Rehabil 1994;75:825-829.
    • (1994) Arch Phys Med Rehabil , vol.75 , pp. 825-829
    • Powers, C.M.1    Torburn, L.2    Perry, J.3    Ayyappa, E.4
  • 31
    • 0032102046 scopus 로고    scopus 로고
    • Segment velocities in normal and transtibial amputees: Prosthetic design implications
    • Rao SS, Boyd LA, Mulroy SJ, et al. Segment velocities in normal and transtibial amputees: prosthetic design implications. IEEE Trans Rehabil Eng 1998;6:219-226.
    • (1998) IEEE Trans Rehabil Eng , vol.6 , pp. 219-226
    • Rao, S.S.1    Boyd, L.A.2    Mulroy, S.J.3
  • 32
    • 0036890046 scopus 로고    scopus 로고
    • Energy expenditure and biomechanical characteristics of lower limb amputee gait: The influence of prosthetic alignment and different prosthetic components
    • Schmalz T, Blumentritt S, Jarasch R. Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture 2002;16:255-263.
    • (2002) Gait Posture , vol.16 , pp. 255-263
    • Schmalz, T.1    Blumentritt, S.2    Jarasch, R.3
  • 33
    • 0029586386 scopus 로고
    • The effect of five prosthetic feet on the gait and loading of the sound limb in dysvascular below-knee amputees
    • Snyder RD, Powers CM, Fontaine C, Perry J. The effect of five prosthetic feet on the gait and loading of the sound limb in dysvascular below-knee amputees. J Rehabil Res Dev 1995;32:309-315.
    • (1995) J Rehabil Res Dev , vol.32 , pp. 309-315
    • Snyder, R.D.1    Powers, C.M.2    Fontaine, C.3    Perry, J.4
  • 34
    • 0025479958 scopus 로고
    • Below-knee amputee gait with dynamic elastic response prosthetic feet: A pilot study
    • Torburn L, Perry J, Ayyappa E, Shanfield SL. Below-knee amputee gait with dynamic elastic response prosthetic feet: a pilot study. J Rehabil Res Dev 1990;27:369-384.
    • (1990) J Rehabil Res Dev , vol.27 , pp. 369-384
    • Torburn, L.1    Perry, J.2    Ayyappa, E.3    Shanfield, S.L.4
  • 35
    • 0029073723 scopus 로고
    • Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: A comparison of five prosthetic feet
    • Torburn L, Powers CM, Guiterrez R, Perry J. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet. J Rehabil Res Dev 1995;32:111-119.
    • (1995) J Rehabil Res Dev , vol.32 , pp. 111-119
    • Torburn, L.1    Powers, C.M.2    Guiterrez, R.3    Perry, J.4
  • 36
    • 0002381341 scopus 로고
    • Motion analysis of SACH vs. Flex-Foot in moderately active below-knee amputees
    • Wagner J, Sienko S, Supan T, Barth D. Motion analysis of SACH vs. Flex-Foot in moderately active below-knee amputees. Clin Prosthet Orthot 1987;11:55-62.
    • (1987) Clin Prosthet Orthot , vol.11 , pp. 55-62
    • Wagner, J.1    Sienko, S.2    Supan, T.3    Barth, D.4
  • 37
    • 0019545930 scopus 로고
    • The projection of the ground reaction force as a predictor of internal joint moments
    • Wells R. The projection of the ground reaction force as a predictor of internal joint moments. Bull Prosthet Res 1981;18:15-19.
    • (1981) Bull Prosthet Res , vol.18 , pp. 15-19
    • Wells, R.1
  • 40
    • 0035018006 scopus 로고    scopus 로고
    • Lower limb amputation. Part 3: Prosthetics - A 10 year literature review
    • Cochrane H, Orsi K, Reilly P. Lower limb amputation. Part 3: Prosthetics - a 10 year literature review. Prosthet Orthot Int 2001;25:21-28.
    • (2001) Prosthet Orthot Int , vol.25 , pp. 21-28
    • Cochrane, H.1    Orsi, K.2    Reilly, P.3
  • 41
    • 0036208095 scopus 로고    scopus 로고
    • Transtibial energy-storage-and-return prosthetic devices: A review of energy concepts and a proposed nomenclature
    • Hafner BJ, Sanders JE, Czerniecki J, Fergason J. Transtibial energy-storage-and-return prosthetic devices: a review of energy concepts and a proposed nomenclature. J Rehabil Res Dev 2002;39:1-11.
    • (2002) J Rehabil Res Dev , vol.39 , pp. 1-11
    • Hafner, B.J.1    Sanders, J.E.2    Czerniecki, J.3    Fergason, J.4
  • 42
    • 0036083977 scopus 로고    scopus 로고
    • Energy storage and return prostheses: Does patient perception correlate with biomechanical analysis?
    • Hafner BJ, Sanders JE, Czerniecki J, Fergason J. Energy storage and return prostheses: does patient perception correlate with biomechanical analysis? Clin Biomech 2002;17:325-344.
    • (2002) Clin Biomech , vol.17 , pp. 325-344
    • Hafner, B.J.1    Sanders, J.E.2    Czerniecki, J.3    Fergason, J.4
  • 43
    • 84921703407 scopus 로고    scopus 로고
    • Prescription of prosthetic ankle-foot mechanisms after lower limb amputation
    • Hofstad C, Linde H, Limbeek J, Postema K. Prescription of prosthetic ankle-foot mechanisms after lower limb amputation. Cochrane Database Syst Rev 2004;(1):CD003978.
    • (2004) Cochrane Database Syst Rev , Issue.1
    • Hofstad, C.1    Linde, H.2    Limbeek, J.3    Postema, K.4
  • 44
    • 0035968568 scopus 로고    scopus 로고
    • Science, medicine, and the future: Artificial limbs
    • Marks LJ, Michael JW. Science, medicine, and the future: Artificial limbs. BMJ 2001;323:732-735.
    • (2001) BMJ , vol.323 , pp. 732-735
    • Marks, L.J.1    Michael, J.W.2
  • 45
    • 0036377554 scopus 로고    scopus 로고
    • Gait analysis in prosthetics: Opinions, ideas and conclusions
    • Rietman JS, Postema K, Geertzen JH. Gait analysis in prosthetics: opinions, ideas and conclusions. Prosthet Orthot Int 2002;26:50-57.
    • (2002) Prosthet Orthot Int , vol.26 , pp. 50-57
    • Rietman, J.S.1    Postema, K.2    Geertzen, J.H.3
  • 46
    • 4644251475 scopus 로고    scopus 로고
    • A systematic literature review of the effect of different prosthetic components on human functioning with a lower-limb prosthesis
    • van der Linde H, Hofstad CJ, Geurts AC, et al. A systematic literature review of the effect of different prosthetic components on human functioning with a lower-limb prosthesis. J Rehabil Res Dev 2004;41:555-570.
    • (2004) J Rehabil Res Dev , vol.41 , pp. 555-570
    • Van Der Linde, H.1    Hofstad, C.J.2    Geurts, A.C.3
  • 49
    • 0035601475 scopus 로고    scopus 로고
    • What determines the vertical displacement of the body during normal walking?
    • Gard S, Childress D. What determines the vertical displacement of the body during normal walking? J Prosthet Orthot 2001;13:64-67.
    • (2001) J Prosthet Orthot , vol.13 , pp. 64-67
    • Gard, S.1    Childress, D.2
  • 50
    • 0024060614 scopus 로고
    • Simulation of the double limb support phase of human gait
    • Ju M, Mansour J. Simulation of the double limb support phase of human gait. J Biomech Eng 1988;110:223-229.
    • (1988) J Biomech Eng , vol.110 , pp. 223-229
    • Ju, M.1    Mansour, J.2
  • 52
    • 0025416905 scopus 로고
    • Passive dynamic walking
    • McGeer T. Passive dynamic walking. Int J Robot Res 1990;9:62-82.
    • (1990) Int J Robot Res , vol.9 , pp. 62-82
    • McGeer, T.1
  • 53
    • 0023106868 scopus 로고
    • Stance phase control of above-knee prostheses: Knee control versus SACH foot design
    • Stein J, Flowers W. Stance phase control of above-knee prostheses: knee control versus SACH foot design. J Biomech 1987;20:19-28.
    • (1987) J Biomech , vol.20 , pp. 19-28
    • Stein, J.1    Flowers, W.2
  • 54
    • 13844306287 scopus 로고    scopus 로고
    • Efficient bipedal robots based on passive-dynamic walkers
    • Collins S, Ruina A, Tedrake R, Wisse M. Efficient bipedal robots based on passive-dynamic walkers. Science 2005;307:1082-1085.
    • (2005) Science , vol.307 , pp. 1082-1085
    • Collins, S.1    Ruina, A.2    Tedrake, R.3    Wisse, M.4
  • 55
    • 0034536805 scopus 로고    scopus 로고
    • Prosthetic foot roll-over shapes with implications for alignment of trans-tibial prostheses
    • Hansen AH, Childress DS, Knox EH. Prosthetic foot roll-over shapes with implications for alignment of trans-tibial prostheses. Prosthet Orthot Int 2000;24:205-215.
    • (2000) Prosthet Orthot Int , vol.24 , pp. 205-215
    • Hansen, A.H.1    Childress, D.S.2    Knox, E.H.3
  • 56
    • 1942454276 scopus 로고    scopus 로고
    • Roll-over shapes of human locomotor systems: Effects of walking speed
    • Hansen A, Childress D, Knox E. Roll-over shapes of human locomotor systems: Effects of walking speed. Clin Biomech 2004;19:407-414.
    • (2004) Clin Biomech , vol.19 , pp. 407-414
    • Hansen, A.1    Childress, D.2    Knox, E.3
  • 57
    • 4644239963 scopus 로고    scopus 로고
    • Effects of shoe heel height on biologic roll-over characteristics during walking
    • Hansen A, Childress D. Effects of shoe heel height on biologic roll-over characteristics during walking. J Rehabil Res Dev 2004;41:547-554.
    • (2004) J Rehabil Res Dev , vol.41 , pp. 547-554
    • Hansen, A.1    Childress, D.2
  • 58
    • 23344451807 scopus 로고    scopus 로고
    • Effects of adding weight to the torso on roll-over characteristics of walking
    • Hansen A, Childress D. Effects of adding weight to the torso on roll-over characteristics of walking. J Rehabil Res Dev; 42:381-390.
    • J Rehabil Res Dev , vol.42 , pp. 381-390
    • Hansen, A.1    Childress, D.2
  • 59
    • 0141921568 scopus 로고    scopus 로고
    • Alignment of trans-tibial prostheses based on roll-over shape
    • Hansen AH, Meier MR, Sam M, et al. Alignment of trans-tibial prostheses based on roll-over shape. Prosthet Orthot Int 2003;27:89-99.
    • (2003) Prosthet Orthot Int , vol.27 , pp. 89-99
    • Hansen, A.H.1    Meier, M.R.2    Sam, M.3
  • 61
    • 2342444624 scopus 로고    scopus 로고
    • The effective foot length ratio (EFLR) a potential tool for characterization and evaluation of prosthetic feet
    • Hansen A, Sam M, Childress D. The effective foot length ratio (EFLR) a potential tool for characterization and evaluation of prosthetic feet. J Prosthet Orthot 2004;16:41-45.
    • (2004) J Prosthet Orthot , vol.16 , pp. 41-45
    • Hansen, A.1    Sam, M.2    Childress, D.3
  • 64
    • 27744468075 scopus 로고    scopus 로고
    • Use of an electromagnetic tracking device in foot motion analysis: Validation with neutrally aligned feet
    • Portland, OR, April 6-9
    • Harp C, Rohr E, Orendurff M, et al. Use of an electromagnetic tracking device in foot motion analysis: validation with neutrally aligned feet. Presented at the meeting of the Gait and Clinical Movement Analysis Society, Portland, OR, April 6-9, 2005.
    • (2005) Meeting of the Gait and Clinical Movement Analysis Society
    • Harp, C.1    Rohr, E.2    Orendurff, M.3
  • 65
    • 0343431413 scopus 로고    scopus 로고
    • Improved agreement of foot segmental power and rate of energy change during gait: Inclusion of distal power terms and use of three-dimensional models
    • Siegel KL, Kepple TM, Caldwell GE. Improved agreement of foot segmental power and rate of energy change during gait: inclusion of distal power terms and use of three-dimensional models. J Biomech 1996;29:823-827.
    • (1996) J Biomech , vol.29 , pp. 823-827
    • Siegel, K.L.1    Kepple, T.M.2    Caldwell, G.E.3
  • 66
    • 0028662677 scopus 로고
    • Translational and rotational joint power terms in a six degree-of-freedom model of the normal ankle complex
    • Buczek FL, Kepple TM, Siegel KL, Stanhope SJ. Translational and rotational joint power terms in a six degree-of-freedom model of the normal ankle complex. J Biomech 1994;27:1447-1457.
    • (1994) J Biomech , vol.27 , pp. 1447-1457
    • Buczek, F.L.1    Kepple, T.M.2    Siegel, K.L.3    Stanhope, S.J.4
  • 67
    • 3242655551 scopus 로고    scopus 로고
    • Load transfer mechanics between trans-tibial prosthetic socket and residual limb: Dynamic effects
    • Jia X, Zhang M, Lee WCC. Load transfer mechanics between trans-tibial prosthetic socket and residual limb: dynamic effects. J Biomech 2004;37:1371-1377.
    • (2004) J Biomech , vol.37 , pp. 1371-1377
    • Jia, X.1    Zhang, M.2    Lee, W.C.C.3
  • 68
    • 13844289211 scopus 로고    scopus 로고
    • Neural network estimation of balance control during locomotion
    • Hahn ME, Farley AM, Lin V, Chou LS. Neural network estimation of balance control during locomotion. J Biomech 2005;38:717-724.
    • (2005) J Biomech , vol.38 , pp. 717-724
    • Hahn, M.E.1    Farley, A.M.2    Lin, V.3    Chou, L.S.4
  • 69
    • 4744370396 scopus 로고    scopus 로고
    • Applications of artificial neural nets in clinical biomechanics
    • Schollhorn WI. Applications of artificial neural nets in clinical biomechanics. Clin Biomech 2004;19:876-898.
    • (2004) Clin Biomech , vol.19 , pp. 876-898
    • Schollhorn, W.I.1
  • 70
    • 0034966179 scopus 로고    scopus 로고
    • Fuzzy clustering of gait patterns of patients after ankle arthrodesis based on kinematic parameters
    • Su F, Wu W, Cheng Y, Chou Y. Fuzzy clustering of gait patterns of patients after ankle arthrodesis based on kinematic parameters. Med Eng Phys 2001;23(2):83-90.
    • (2001) Med Eng Phys , vol.23 , Issue.2 , pp. 83-90
    • Su, F.1    Wu, W.2    Cheng, Y.3    Chou, Y.4
  • 71
    • 0035143369 scopus 로고    scopus 로고
    • A review of analytical techniques for gait data. Part 1: Fuzzy, statistical and fractal methods
    • Chau T. A review of analytical techniques for gait data. Part 1: Fuzzy, statistical and fractal methods. Gait Posture 2001;13(1):49-66.
    • (2001) Gait Posture , vol.13 , Issue.1 , pp. 49-66
    • Chau, T.1
  • 72
    • 0035127282 scopus 로고    scopus 로고
    • A review of analytical techniques for gait data. Part 2: Neural network and wavelet methods
    • Chau T. A review of analytical techniques for gait data. Part 2: Neural network and wavelet methods. Gait Posture 2001;13(2):102-120.
    • (2001) Gait Posture , vol.13 , Issue.2 , pp. 102-120
    • Chau, T.1
  • 73
    • 27744465968 scopus 로고    scopus 로고
    • Plantar pedobarographic quantification of dynamic transtibial prosthetic alignment in a clinical setting
    • Portland, OR, April 6-9
    • Geil M, Lay A. Plantar pedobarographic quantification of dynamic transtibial prosthetic alignment in a clinical setting. Presented at the meeting of the Gait and Clinical Movement Analysis Society, Portland, OR, April 6-9, 2005.
    • (2005) Meeting of the Gait and Clinical Movement Analysis Society
    • Geil, M.1    Lay, A.2
  • 75
    • 0035263427 scopus 로고    scopus 로고
    • A 3-D marker-free system for the analysis of movement disabilities: An application to the legs
    • Marzani F, Calais E, Legrand L. A 3-D marker-free system for the analysis of movement disabilities: an application to the legs. IEEE Trans Inf Technol Biomed 2001;5(1):18-26.
    • (2001) IEEE Trans Inf Technol Biomed , vol.5 , Issue.1 , pp. 18-26
    • Marzani, F.1    Calais, E.2    Legrand, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.