메뉴 건너뛰기




Volumn 32, Issue 4, 2005, Pages 485-494

Existence of solutions and star-shapedness in Minty variational inequalities

Author keywords

Existence of solutions; Generalized convexity; Minty variational inequality; Star shaped sets; Well posedness

Indexed keywords

FUNCTIONS; MATHEMATICAL OPERATORS; OPTIMIZATION; PROBLEM SOLVING;

EID: 27744479258     PISSN: 09255001     EISSN: 15732916     Source Type: Journal    
DOI: 10.1007/s10898-003-2685-0     Document Type: Article
Times cited : (45)

References (8)
  • 5
    • 0042884758 scopus 로고
    • On the generalization of a direct method of the calculus of variations
    • Minty, G.J. (1967), On the generalization of a direct method of the calculus of variations, Bulletin of the American Mathematical Society 73, 314-321.
    • (1967) Bulletin of the American Mathematical Society , vol.73 , pp. 314-321
    • Minty, G.J.1
  • 7
    • 0000544120 scopus 로고
    • Formes bilinéaires coercives sur les ensembles convexes
    • Groupe 1
    • Stampacchia, G. (1960), Formes bilinéaires coercives sur les ensembles convexes, C. R. Acad. Sciences de Paris, t.258, Groupe 1, pp. 4413-4416.
    • (1960) C. R. Acad. Sciences de Paris , vol.258 , pp. 4413-4416
    • Stampacchia, G.1
  • 8
    • 27744461190 scopus 로고    scopus 로고
    • Preprint 29/6, Department of Economics, University of Lecce
    • Zaffaroni, A. (2001), Is every radiant function the sum of quasiconvex functions?, Preprint 29/6, Department of Economics, University of Lecce. Internet: http://www.asi.unile.it/economia.web/pubblicazioni/pubbli.dse/ radiantl.pdf
    • (2001) Is Every Radiant Function the Sum of Quasiconvex Functions?
    • Zaffaroni, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.