-
1
-
-
0001457134
-
Extension of functions satisfying Lipschitz conditions
-
Aronsson, G. (1967). Extension of functions satisfying Lipschitz conditions. Arkiv für Mate. 6:551-561.
-
(1967)
Arkiv für Mate
, vol.6
, pp. 551-561
-
-
Aronsson, G.1
-
5
-
-
3042774574
-
On the behavior of ∞-harmoninc functions near isolated points
-
Bhattacharya, T. (2005). On the behavior of ∞-harmoninc functions near isolated points. Nonlinear Analysis 58:333-349.
-
(2005)
Nonlinear Analysis
, vol.58
, pp. 333-349
-
-
Bhattacharya, T.1
-
7
-
-
0012678938
-
Optimal Lipschitz extensions and the infinity Laplacian
-
Crandall, M. G., Evans, L. C., Gariepy, R. F. (2001). Optimal Lipschitz extensions and the infinity Laplacian. Calculus of Variations and Partial Differential Equations 13:123-139.
-
(2001)
Calculus of Variations and Partial Differential Equations
, vol.13
, pp. 123-139
-
-
Crandall, M.G.1
Evans, L.C.2
Gariepy, R.F.3
-
9
-
-
85061644809
-
Three singular variational problems
-
RIMS Kokyuroku 1323. Research Institute for the Matematical Sciences
-
Evans, L. C. (2003b). Three singular variational problems. Viscosity Solutions of Differential Equations and Related Topics. RIMS Kokyuroku 1323. Research Institute for the Matematical Sciences.
-
(2003)
Viscosity Solutions of Differential Equations and Related Topics
-
-
Evans, L.C.1
-
10
-
-
0013247963
-
-
Cambridge Studies in Advanced Mathematics. New York: Cambridge University Press
-
Fathi, A. (2004). The Weak KAM Theorem in Lagrangian Dynamcis. Cambridge Studies in Advanced Mathematics. New York: Cambridge University Press.
-
(2004)
The Weak KAM Theorem in Lagrangian Dynamcis
-
-
Fathi, A.1
-
11
-
-
21144476154
-
Uniqueness of Lipschitz extensions minimizing the sup-norm of the gradient
-
Jensen, R. (1993). Uniqueness of Lipschitz extensions minimizing the sup-norm of the gradient. Arch. Rat. Mech. Analysis 123:51-74.
-
(1993)
Arch. Rat. Mech. Analysis
, vol.123
, pp. 51-74
-
-
Jensen, R.1
-
12
-
-
21644465169
-
Convergent difference scheme approximations for the infinity Laplacian: Construction of absolutely minimizing Lipschitz extensions
-
Oberman, A. (2005). Convergent difference scheme approximations for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions. Math. Comp. 74:1217-1230.
-
(2005)
Math. Comp.
, vol.74
, pp. 1217-1230
-
-
Oberman, A.1
-
13
-
-
18844400607
-
1 regularity for infinity harmonic fuctions in two dimensions
-
1 regularity for infinity harmonic fuctions in two dimensions. Arch. Rational Mech. Analysis 176:351-361.
-
(2005)
Arch. Rational Mech. Analysis
, vol.176
, pp. 351-361
-
-
Savin, O.1
|