-
1
-
-
0023577191
-
Application of the mesh independence principle to mesh refinement strategies
-
E. L. ALLGOWER AND K. BÖHMER, Application of the mesh independence principle to mesh refinement strategies, SIAM J. Numer. Anal., 24 (1987), pp. 1335-1351.
-
(1987)
SIAM J. Numer. Anal.
, vol.24
, pp. 1335-1351
-
-
Allgower, E.L.1
Böhmer, K.2
-
2
-
-
0022661397
-
A mesh-independence principle for operator equations and their discretizations
-
E. L. ALLGOWER, K. BÖHMER, F. A. POTRA, AND W. C. RHEINBOLDT, A mesh-independence principle for operator equations and their discretizations, SIAM J. Numer. Anal., 23 (1986), pp. 160-169.
-
(1986)
SIAM J. Numer. Anal.
, vol.23
, pp. 160-169
-
-
Allgower, E.L.1
Böhmer, K.2
Potra, F.A.3
Rheinboldt, W.C.4
-
3
-
-
0035596193
-
Mesh-independence of the Lagrange-Newton method for nonlinear optimal control problems and their discretizations
-
W. ALT, Mesh-independence of the Lagrange-Newton method for nonlinear optimal control problems and their discretizations, Ann. Oper. Res., 101 (2001), pp. 101-117.
-
(2001)
Ann. Oper. Res.
, vol.101
, pp. 101-117
-
-
Alt, W.1
-
5
-
-
0003854283
-
-
Cambridge University Press, Cambridge, UK
-
D. BRAESS, Finite Elements, 2nd ed., Cambridge University Press, Cambridge, UK, 2001.
-
(2001)
Finite Elements, 2nd Ed.
-
-
Braess, D.1
-
6
-
-
27744537113
-
-
private communication
-
D. BRAESS, private communication, 2002.
-
(2002)
-
-
Braess, D.1
-
7
-
-
0001820687
-
Affine invariant convergence theorems for Newton's method and extensions to related methods
-
P. DEUFLHARD AND G. HEINDL, Affine invariant convergence theorems for Newton's method and extensions to related methods, SIAM J. Numer. Anal., 16 (1979), pp. 1-10.
-
(1979)
SIAM J. Numer. Anal.
, vol.16
, pp. 1-10
-
-
Deuflhard, P.1
Heindl, G.2
-
8
-
-
0026940480
-
Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem
-
P. DEUFLHARD AND F. POTRA, Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem, SIAM J. Numer. Anal., 29 (1992), pp. 1395-1412.
-
(1992)
SIAM J. Numer. Anal.
, vol.29
, pp. 1395-1412
-
-
Deuflhard, P.1
Potra, F.2
-
9
-
-
0005175075
-
Local inexact Newton multilevel FEM for nonlinear elliptic problems
-
M.-O. Bristeau, G. Etgen, W. Fitzigibbon, J.-L. Lions, J. Periaux, and M. Wheeler, eds., Wiley-Interscience, New York
-
P. DEUFLHARD AND M. WEISER, Local inexact Newton multilevel FEM for nonlinear elliptic problems, in Computational Science for the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzigibbon, J.-L. Lions, J. Periaux, and M. Wheeler, eds., Wiley-Interscience, New York, 1997, pp. 129-138.
-
(1997)
Computational Science for the 21st Century
, pp. 129-138
-
-
Deuflhard, P.1
Weiser, M.2
-
10
-
-
0012964199
-
Global inexact Newton multilevel FEM for nonlinear elliptic problems
-
Multigrid Methods V, W. Hackbusch and G. Wittum, eds., Springer-Verlag, Berlin
-
P. DEUFLHARD AND M. WEISER, Global inexact Newton multilevel FEM for nonlinear elliptic problems, in Multigrid Methods V, Lect. Notes Comput. Sci. Eng. 3, W. Hackbusch and G. Wittum, eds., Springer-Verlag, Berlin, 1998, pp. 71-89.
-
(1998)
Lect. Notes Comput. Sci. Eng.
, vol.3
, pp. 71-89
-
-
Deuflhard, P.1
Weiser, M.2
-
11
-
-
0034437960
-
Uniform convergence and mesh independence of Newton's method for discretized variational problems
-
A. DONTCHEV, W. HAGER, AND V. VELIOV, Uniform convergence and mesh independence of Newton's method for discretized variational problems, SIAM J. Control Optim., 39 (2000), pp. 961-980.
-
(2000)
SIAM J. Control Optim.
, vol.39
, pp. 961-980
-
-
Dontchev, A.1
Hager, W.2
Veliov, V.3
-
12
-
-
0003304216
-
Elliptic partial differential equations of second order
-
Springer-Verlag, Berlin, New York
-
D. GILBARG AND N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss. 224, Springer-Verlag, Berlin, New York, 1977.
-
(1977)
Grundlehren Math. Wiss.
, vol.224
-
-
Gilbarg, D.1
Trudinger, N.S.2
-
14
-
-
0012912813
-
Solving ordinary differential e quations. I: Nonstiff problems
-
2nd Ed., Springer-Verlag, Berlin
-
E. HAIRER, S. NØRSETT, AND G. WANNER, Solving Ordinary Differential E quations. I: Nonstiff Problems, Springer Ser. Comput. Math. 8, 2nd ed., Springer-Verlag, Berlin, 1993.
-
(1993)
Springer Ser. Comput. Math.
, vol.8
-
-
Hairer, E.1
Nørsett, S.2
Wanner, G.3
-
15
-
-
0000409919
-
Mesh independence for nonlinear least squares problems with norm constraints
-
M. HEINKENSCHLOSS, Mesh independence for nonlinear least squares problems with norm constraints, SIAM J. Optim., 3 (1993), pp. 81-117.
-
(1993)
SIAM J. Optim.
, vol.3
, pp. 81-117
-
-
Heinkenschloss, M.1
-
16
-
-
0002886450
-
Mesh independence of Newton-like methods for infinite dimensional problems
-
C. KELLEY AND E. SACHS, Mesh independence of Newton-like methods for infinite dimensional problems, J. Integral Equations Appl., 3 (1991), pp. 549-573.
-
(1991)
J. Integral Equations Appl.
, vol.3
, pp. 549-573
-
-
Kelley, C.1
Sachs, E.2
-
17
-
-
0026838777
-
Mesh independence of the gradient projection method for optimal control problems
-
C. T. KELLEY AND E. W. SACHS, Mesh independence of the gradient projection method for optimal control problems, SIAM J. Control Optim., 30 (1992), pp. 477-493.
-
(1992)
SIAM J. Control Optim.
, vol.30
, pp. 477-493
-
-
Kelley, C.T.1
Sachs, E.W.2
-
18
-
-
0032688739
-
Newton's mesh independence principle for a class of optimal shape design problems
-
M. LAUMEN, Newton's mesh independence principle for a class of optimal shape design problems, SIAM J. Control Optim., 37 (1999), pp. 1070-1088.
-
(1999)
SIAM J. Control Optim.
, vol.37
, pp. 1070-1088
-
-
Laumen, M.1
-
19
-
-
11044223491
-
A revised mesh refinement strategy for Newton's method applied to nonlinear two-point boundary value problems
-
Numerical Treatment of Differential Equations Applications, Springer-Verlag, Berlin
-
S. McCORMiCK, A revised mesh refinement strategy for Newton's method applied to nonlinear two-point boundary value problems, in Numerical Treatment of Differential Equations Applications, Lecture Notes in Math. 679, Springer-Verlag, Berlin, 1978, pp. 15-23.
-
(1978)
Lecture Notes in Math.
, vol.679
, pp. 15-23
-
-
McCormick, S.1
-
20
-
-
0000592131
-
Mesh-independence for an augmented Lagrangian-SQP method in Hilbert spaces
-
S. VOLKWEIN, Mesh-independence for an augmented Lagrangian-SQP method in Hilbert spaces, SIAM J. Control Optim., 38 (2000), pp. 767-785.
-
(2000)
SIAM J. Control Optim.
, vol.38
, pp. 767-785
-
-
Volkwein, S.1
-
21
-
-
0036462787
-
Mesh-independence of Lagrange-SQP methods with Lipschitz-continuous Lagrange multiplier updates
-
S. VOLKWEIN, Mesh-independence of Lagrange-SQP methods with Lipschitz-continuous Lagrange multiplier updates, Optim. Methods Softw., 17 (2002), pp. 77-111.
-
(2002)
Optim. Methods Softw.
, vol.17
, pp. 77-111
-
-
Volkwein, S.1
-
22
-
-
27744461381
-
Asymptotic mesh independence of Newton's method revisited
-
preprint, Zuse Institute Berlin, Berlin, Germany
-
M. WEISER, A. SCHIELA, AND P. DEUFLHARD, Asymptotic Mesh Independence of Newton's Method Revisited, preprint, ZIB Report 03-13, Zuse Institute Berlin, Berlin, Germany, 2003.
-
(2003)
ZIB Report
, vol.3
, Issue.13
-
-
Weiser, M.1
Schiela, A.2
Deuflhard, P.3
|