-
2
-
-
0001301125
-
-
S. Dehnen, A. Schäfer, D. Fenske, R. Ahlrichs, Angew. Chem. 1994, 106, 786;
-
(1994)
Angew. Chem.
, vol.106
, pp. 786
-
-
Dehnen, S.1
Schäfer, A.2
Fenske, D.3
Ahlrichs, R.4
-
5
-
-
0000152631
-
-
D. Fenske, H. Krautscheid, S. Balter, Angew. Chem. 1990, 102, 799-801;
-
(1990)
Angew. Chem.
, vol.102
, pp. 799-801
-
-
Fenske, D.1
Krautscheid, H.2
Balter, S.3
-
9
-
-
0000725860
-
-
H. Krautscheid, D. Fenske, G. Baum, M. Semmelmann, ibid. 1993, 105, 1364-1367
-
(1993)
Angew. Chem. Int. Ed. Engl.
, vol.105
, pp. 1364-1367
-
-
Krautscheid, H.1
Fenske, D.2
Baum, G.3
Semmelmann, M.4
-
13
-
-
84891318553
-
-
Diplomarbeit, Karlsruhe
-
S. Dehnen, Diplomarbeit, Karlsruhe, 1993.
-
(1993)
-
-
Dehnen, S.1
-
14
-
-
23544453016
-
-
J. H. El Nakat, I. G. Dance, K. J. Fisher, G. D. Willet, Inorg. Chem. 1991, 30, 2957.
-
(1991)
Inorg. Chem.
, vol.30
, pp. 2957
-
-
El Nakat, J.H.1
Dance, I.G.2
Fisher, K.J.3
Willet, G.D.4
-
16
-
-
4243539377
-
-
R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165;
-
(1989)
Chem. Phys. Lett.
, vol.162
, pp. 165
-
-
Ahlrichs, R.1
Bär, M.2
Häser, M.3
Horn, H.4
Kölmel, C.5
-
18
-
-
36549103818
-
-
a) M. M. Hurley, L. F. Pacios, P. A. Christiansen, R. B. Ross, W. C. Ermler, J. Chem. Phys. 1986, 84, 6840;
-
(1986)
J. Chem. Phys.
, vol.84
, pp. 6840
-
-
Hurley, M.M.1
Pacios, L.F.2
Christiansen, P.A.3
Ross, R.B.4
Ermler, W.C.5
-
20
-
-
0002887099
-
-
A. Schäfer, C. Huber, J. Gauss, R. Ahlrichs, Theor. Chim. Acta 1993, 87, 29.
-
(1993)
Theor. Chim. Acta
, vol.87
, pp. 29
-
-
Schäfer, A.1
Huber, C.2
Gauss, J.3
Ahlrichs, R.4
-
21
-
-
0000051866
-
-
U. Schneider, R. Ahlrichs, H. Horn, A. Schäfer, Angew. Chem. 1992, 104, 327;
-
(1992)
Angew. Chem.
, vol.104
, pp. 327
-
-
Schneider, U.1
Ahlrichs, R.2
Horn, H.3
Schäfer, A.4
-
23
-
-
84891287379
-
-
Dissertation, Karlsruhe
-
A. Schäfer, Dissertation, Karlsruhe, 1994.
-
(1994)
-
-
Schäfer, A.1
-
26
-
-
84891313322
-
-
note
-
8] [3], which has the least distorted Cu-S cluster core. The differences in the Cu-Cu bond distances between the calculated and the experimental structures are very small for the Cu-S and the Cu-P bond lengths (0-4 pm) and bigger for most of the (nonbonding) Cu-Cu distances (3-22 pm). However, one should notice that Cu-Cu distances that are equivalent in 21 differ by up to 15 pm in the experimental structure. b) As with the ligand-free clusters, the range of Cu-E and Cu-Cu distances is bigger in the case of sulfur-containing compounds than for those containing selenium. Likewise one finds that through the substitution of sulfur for selenium, a significant decrease of Cu-E distances - 13 pm (in 15) to 8 pm (in 19) - is observed. However, in one case, there is almost no change (Cu3-S1 in 15). At 250.6 pm (251.4 pm), this metal-chalcogen bond is the longest found in these investigations. Also the metal-metal distances are for the most part shorter in the sulfur-containing clusters. The deviation of ± 5 pm compared with the copper selenide clusters is small, in fact there are bigger differences to be found in some cases when comparing with the "naked" clusters; the Cu-Cu contacts with a maximum of one sulfur bridge are particularly affected (e.g., 20: Cu2-Cu2′) as well as those which exhibit large metal-atom distances in both cluster types (e.g., 16: Cu2-Cu2′). The comparison of S-Cu-S angles with the corresponding Se-Cu-Se angles gives the same result as for the ligand-free clusters (except the S-Cu1-S′ angle in 19, +0.9°). The Cu-P bond lengths are up to 2 pm shorter in the sulfur-bridged clusters than in the selenium analogues. This might be put down to the slightly larger electronegativity of sulfur (2.58) [19] than selenium (2.55) [19] and therefore the associated somewhat stronger polarisation of the copper atoms.
-
-
-
-
28
-
-
84891293574
-
-
note
-
3) = -125.166886 hartree (MP2).
-
-
-
|