-
1
-
-
0003410592
-
Combinatorial dynamics and entropy in dimension one, Advanced Series
-
World Scientific
-
L. ALSEDÀ, J. LLIBRE and M. MISIUREWICZ, Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics 5 (1993), World Scientific.
-
(1993)
Nonlinear Dynamics
, vol.5
-
-
Alsedà, L.1
Llibre, J.2
Misiurewicz, M.3
-
2
-
-
0001743171
-
On Devaney’s definition of chaos
-
J. BANKS, J. BROOKS, G. CAIRNS, G. DAVIS and P. STACEY, On Devaney’s definition of chaos, Amer. Math. Monthly 99 (1992), 332–334.
-
(1992)
Amer. Math. Monthly
, vol.99
, pp. 332-334
-
-
Banks, J.1
Brooks, J.2
Cairns, G.3
Davis, G.4
Stacey, P.5
-
4
-
-
0038957575
-
Homoclinic and non-wandering points for maps of the circle
-
L. BLOCK, E. COVEN, I. MULVEY and Z. NITECKI, Homoclinic and non-wandering points for maps of the circle, Ergod. Th. and Dynam. Sys. 3 (1983), 521–532.
-
(1983)
Ergod. Th. and Dynam. Sys
, vol.3
, pp. 521-532
-
-
Block, L.1
Coven, E.2
Mulvey, I.3
Nitecki, Z.4
-
6
-
-
0001138434
-
Sensitive dependence on initial conditions
-
E. GLASNER and B. WEISS, Sensitive dependence on initial conditions, Nonlinearity 6 (1993), 1067–1075.
-
(1993)
Nonlinearity
, vol.6
, pp. 1067-1075
-
-
Glasner, E.1
Weiss, B.2
-
8
-
-
0242289398
-
Characterization of chaos for continuous maps of the circle, Comment
-
M. KUCHTA, Characterization of chaos for continuous maps of the circle, Comment. Math. Univ. Carolin. 31 (1990), 383–390.
-
(1990)
Math. Univ. Carolin
, vol.31
, pp. 383-390
-
-
Kuchta, M.1
-
9
-
-
84972054518
-
Dynamical properties of the shift maps on the inverse limit spaces
-
S. LI, Dynamical properties of the shift maps on the inverse limit spaces, Ergod. Th. and Dynam. Sys. 12 (1992), 95–108.
-
(1992)
Ergod. Th. and Dynam. Sys
, vol.12
, pp. 95-108
-
-
Li, S.1
-
10
-
-
84968503802
-
ω-chaos and topological entropy
-
S. LI, ω-chaos and topological entropy, Trans. Amer. Math. Soc. 339 (1993), 243–249.
-
(1993)
Trans. Amer. Math. Soc
, vol.339
, pp. 243-249
-
-
Li, S.1
-
11
-
-
0000100336
-
Period three implies chaos, Amer
-
T.-Y. LI and J. A. YORKE, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985–992.
-
(1975)
Math. Monthly
, vol.82
, pp. 985-992
-
-
Li, T.-Y.1
Yorke, J.A.2
-
12
-
-
0010764244
-
Twist sets for maps of the circle
-
M. MISIUREWICZ, Twist sets for maps of the circle, Ergod. Th. and Dynam. Sys. 4 (1984), 391–404.
-
(1984)
Ergod. Th. and Dynam. Sys
, vol.4
, pp. 391-404
-
-
Misiurewicz, M.1
-
13
-
-
0000210461
-
On maps with dense orbits and the definition of chaos Mountain
-
S. SILVERMAN, On maps with dense orbits and the definition of chaos, Rocky Mountain J. Math. 22 (1992), 353–375.
-
(1992)
Rocky. J. Math
, vol.22
, pp. 353-375
-
-
Silverman, S.1
-
14
-
-
84967791483
-
Chaotic functions with zero topological entropy
-
J. SMÍTAL, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269–282.
-
(1986)
Trans. Amer. Math. Soc
, vol.297
, pp. 269-282
-
-
Smítal, J.1
-
15
-
-
21344492385
-
On intervals, transitivity = chaos, Amer
-
M. VELLEKOOP and R. BERGLUND, On intervals, transitivity = chaos, Amer. Math. Monthly 101 (1994), 353–355.
-
(1994)
Math. Monthly
, vol.101
, pp. 353-355
-
-
Vellekoop, M.1
Berglund, R.2
-
16
-
-
84974378759
-
The attracting centre of a continuous self-map of the interval
-
J. XIONG, The attracting centre of a continuous self-map of the interval, Ergod. Th. and Dynam. Sys. 8, (1988), 205–213.
-
(1988)
Ergod. Th. and Dynam. Sys
, vol.8
, pp. 205-213
-
-
Xiong, J.1
-
17
-
-
0040290800
-
Chaos caused by a topologically mixing map, Dynamical systems and related topics (Nagoya, 1990)
-
J. XIONG and Z. YANG, Chaos caused by a topologically mixing map, Dynamical systems and related topics (Nagoya, 1990), Adv. Ser. Dynam. Systems, 9 World Sci. (1991), 550–572.
-
(1991)
Adv. Ser. Dynam. Systems, 9 World Sci
, pp. 550-572
-
-
Xiong, J.1
Yang, Z.2
|