메뉴 건너뛰기




Volumn 52, Issue 10, 2005, Pages 656-660

Approximation of Dynamical Time-Variant Systems by Continuous-Time Recurrent Neural Networks

Author keywords

Approximation; dynamical time variant systems; recurrent neural networks

Indexed keywords

ADAPTIVE ALGORITHMS; APPROXIMATION THEORY; BACKPROPAGATION; LEARNING SYSTEMS; RECURRENT NEURAL NETWORKS; SET THEORY; THEOREM PROVING;

EID: 27644567803     PISSN: 15497747     EISSN: 15583791     Source Type: Journal    
DOI: 10.1109/TCSII.2005.852006     Document Type: Article
Times cited : (104)

References (13)
  • 1
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Nat. Acad. Sci. USA, vol. 79, pp. 2554–2558, 1982.
    • (1982) Proc. Nat. Acad. Sci. USA , vol.79 , pp. 2554-2558
    • Hopfield, J.1
  • 2
    • 0000599735 scopus 로고
    • Dynamics and architecture for neural computation
    • F. J. Pineda, “Dynamics and architecture for neural computation,” J. Complexity, vol. 4, pp. 216–245, 1988.
    • (1988) J. Complexity , vol.4 , pp. 216-245
    • Pineda, F.J.1
  • 3
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw., vol. 2, no. 5, pp. 359–366, 1989.
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 4
    • 0024866495 scopus 로고
    • On the approximation realization of continuous mappings by neural networks
    • K. Funahashi, “On the approximation realization of continuous mappings by neural networks,” Neural Netw., vol. 2, no. 3, pp. 183–191, 1989.
    • (1989) Neural Netw. , vol.2 , Issue.3 , pp. 183-191
    • Funahashi, K.1
  • 5
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math. Control, Signal, Syst., vol. 2, pp. 303–314, 1989.
    • (1989) Math. Control, Signal, Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 6
    • 33749766555 scopus 로고
    • Approximation theory and recurrent networks
    • K. Li, “Approximation theory and recurrent networks,” in Proc. IJCNN'91, vol. 2, 1991, pp. 266–271.
    • (1991) Proc. IJCNN'91 , vol.2 , pp. 266-271
    • Li, K.1
  • 7
    • 0029342140 scopus 로고
    • Approximation of discrete-time state-space trajectories using dynamic recurrent neural networks
    • Jul.
    • L. Jin, P. N. Nikiforuk, and M. M. Gupta, “Approximation of discrete-time state-space trajectories using dynamic recurrent neural networks,” IEEE Trans. Autom. Control, vol. 40, no. 7, pp. 1266–1270, Jul. 1995.
    • (1995) IEEE Trans. Autom. Control , vol.40 , Issue.7 , pp. 1266-1270
    • Jin, L.1    Nikiforuk, P.N.2    Gupta, M.M.3
  • 8
    • 0027154319 scopus 로고
    • Approximation of dynamical systems by continuous time recurrent neural networks
    • K. Funahashi and Y. Nakamura, “Approximation of dynamical systems by continuous time recurrent neural networks,” Neural Netw., vol. 6, pp. 801–806, 1993.
    • (1993) Neural Netw. , vol.6 , pp. 801-806
    • Funahashi, K.1    Nakamura, Y.2
  • 9
    • 0033747856 scopus 로고    scopus 로고
    • Modeling of continuous time dynamical systems with input by recurrent neural networks
    • Apr.
    • T. W. S. Chow and X.-D. Li, “Modeling of continuous time dynamical systems with input by recurrent neural networks,” IEEE Trans. Circuit Syst. I, Fundam. Theory Appl., vol. 47, no. 4, pp. 575–578, Apr. 2000.
    • (2000) IEEE Trans. Circuit Syst. I, Fundam. Theory Appl. , vol.47 , Issue.4 , pp. 575-578
    • Chow, T.W.S.1    Li, X.-D.2
  • 10
    • 0033699721 scopus 로고    scopus 로고
    • Approximation of nonautonomous dynamical systems by continuous time recurrent neural networks
    • C. Kambhampati, F. Garces, and K. Warwick, “Approximation of nonautonomous dynamical systems by continuous time recurrent neural networks,” in Proc. IEEE-INNS-ENNS Int. Joint Conf., vol. 1, 2000, pp. 64–69.
    • (2000) Proc. IEEE-INNS-ENNS Int. Joint Conf. , vol.1 , pp. 64-69
    • Kambhampati, C.1    Garces, F.2    Warwick, K.3
  • 11
    • 0026284586 scopus 로고
    • Capacity of recurrent networks
    • Singapore
    • L. K. Li, “Capacity of recurrent networks,” in Proc. IJCNN'91, vol. 3, Singapore, 1991, pp. 1330–1335.
    • (1991) Proc. IJCNN'91 , vol.3 , pp. 1330-1335
    • Li, L.K.1
  • 12
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks: a survey
    • Sep.
    • B. A. Pearlmutter, “Gradient calculations for dynamic recurrent neural networks: a survey,” IEEE Trans. Neural Netw., vol. 6, no. 5, pp. 1212–1228, Sep. 1995.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , Issue.5 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 13
    • 0031997004 scopus 로고    scopus 로고
    • A recurrent neural network based real-time learning control strategy applying to nonlinear systems with unknown dynamics
    • Feb.
    • T. W. S. Chow and Y. Fang, “A recurrent neural network based real-time learning control strategy applying to nonlinear systems with unknown dynamics,” IEEE Trans. Ind. Electron., vol. 45, no. 1, pp. 151–161, Feb. 1998.
    • (1998) IEEE Trans. Ind. Electron. , vol.45 , Issue.1 , pp. 151-161
    • Chow, T.W.S.1    Fang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.