메뉴 건너뛰기




Volumn 50, Issue 5, 2006, Pages 1272-1286

Hierarchical models for repeated binary data using the IBF sampler

Author keywords

Bayesian computation; Gibbs sampler; Inverse Bayes formulae; MCMC; Monte Carlo EM algorithm

Indexed keywords

ALGORITHMS; COMPUTATIONAL METHODS; DATA REDUCTION; HIERARCHICAL SYSTEMS; MATHEMATICAL MODELS; PROBLEM SOLVING;

EID: 27644554888     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2004.12.006     Document Type: Article
Times cited : (10)

References (40)
  • 1
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear model likelihood with an automated Monte Carlo em algorithm
    • J.G. Booth, and J.P. Hobert Maximizing generalized linear model likelihood with an automated Monte Carlo EM algorithm J. Roy. Statist. Soc. Series B 61 1999 265 285
    • (1999) J. Roy. Statist. Soc. Series B , vol.61 , pp. 265-285
    • Booth, J.G.1    Hobert, J.P.2
  • 2
    • 0011241944 scopus 로고
    • Approximate inference in generalized linear mixed models
    • N.E. Breslow, and D.G. Clayton Approximate inference in generalized linear mixed models J. Amer. Statist. Assoc. 88 1993 9 25
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 9-25
    • Breslow, N.E.1    Clayton, D.G.2
  • 3
    • 0003020981 scopus 로고
    • Bias correction in generalized linear mixed models with single component of dispersion
    • N.E. Breslow, and X. Lin Bias correction in generalized linear mixed models with single component of dispersion Biometrika 82 1995 81 91
    • (1995) Biometrika , vol.82 , pp. 81-91
    • Breslow, N.E.1    Lin, X.2
  • 5
    • 21844487061 scopus 로고
    • Monte Carlo em estimation for time series models involving counts
    • K.S. Chan, and J. Ledolter Monte Carlo EM estimation for time series models involving counts J. Amer. Statist. Assoc. 90 1995 242 252
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 242-252
    • Chan, K.S.1    Ledolter, J.2
  • 6
    • 0003646028 scopus 로고    scopus 로고
    • Bayesian methods for correlated binary data
    • D.K. Dey S.K. Ghosh B.K. Mallick Marcel Dekker New York
    • S. Chib Bayesian methods for correlated binary data D.K. Dey S.K. Ghosh B.K. Mallick Generalized Linear Models A Bayesian Perspective 2000 Marcel Dekker New York 113 131
    • (2000) Generalized Linear Models: A Bayesian Perspective , pp. 113-131
    • Chib, S.1
  • 7
    • 0000911137 scopus 로고    scopus 로고
    • Analysis of multivariate probit models
    • S. Chib, and E. Greenberg Analysis of multivariate probit models Biometrika 85 1998 347 361
    • (1998) Biometrika , vol.85 , pp. 347-361
    • Chib, S.1    Greenberg, E.2
  • 8
    • 0001708275 scopus 로고
    • A likelihood-based method for analyzing longitudinal binary responses
    • G.M. Fitzmaurice, and N.M. Laird A likelihood-based method for analyzing longitudinal binary responses Biometrika 80 1993 141 151
    • (1993) Biometrika , vol.80 , pp. 141-151
    • Fitzmaurice, G.M.1    Laird, N.M.2
  • 11
    • 0001638775 scopus 로고    scopus 로고
    • Exact sampling for Bayesian inference: Towards general purpose algorithms
    • Bernardo, J.M., Berger, J.O., Dawid A.P., Smith, A.F.M. (Eds.) Oxford University Press, Oxford
    • Green, P.J., Murdoch, D.J., 1999. Exact sampling for Bayesian inference: towards general purpose algorithms (with discussion). In: Bernardo, J.M., Berger, J.O., Dawid A.P., Smith, A.F.M. (Eds.), Bayesian Statistics, vol. 6. Oxford University Press, Oxford, pp. 301-321.
    • (1999) Bayesian Statistics , vol.6 , pp. 301-321
    • Green, P.J.1    Murdoch, D.J.2
  • 12
    • 0032379774 scopus 로고    scopus 로고
    • Consist estimators in generalized linear mixed models
    • J. Jiang Consist estimators in generalized linear mixed models J. Amer. Statist. Assoc. 93 1998 720 729
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 720-729
    • Jiang, J.1
  • 13
    • 0000660534 scopus 로고
    • Asymptotically unbiased estimation in generalized linear models with random effects
    • A.Y.C. Kuk Asymptotically unbiased estimation in generalized linear models with random effects J. Roy. Statist. Soc. Series B 57 1995 395 407
    • (1995) J. Roy. Statist. Soc. Series B , vol.57 , pp. 395-407
    • Kuk, A.Y.C.1
  • 14
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • N.M. Laird, and J.H. Ware Random-effects models for longitudinal data Biometrics 38 1982 963 974
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 15
    • 0000312997 scopus 로고    scopus 로고
    • Hierarchical generalized linear models (with discussions)
    • Y. Lee, and J.A. Nelder Hierarchical generalized linear models (with discussions) J. Roy. Statist. Soc. Ser. B 58 1996 619 678
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 619-678
    • Lee, Y.1    Nelder, J.A.2
  • 16
    • 0030336576 scopus 로고    scopus 로고
    • Bias correction in generalized linear mixed models with multiple components of dispersion
    • X. Lin, and N.E. Breslow Bias correction in generalized linear mixed models with multiple components of dispersion J. Amer. Statist. Assoc. 91 1996 1007 1016
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 1007-1016
    • Lin, X.1    Breslow, N.E.2
  • 17
    • 0001508169 scopus 로고    scopus 로고
    • Parameter expansion to accelerate em - The PX-EM algorithm
    • C.H. Liu, D.B. Rubin, and Y.N. Wu Parameter expansion to accelerate EM - the PX-EM algorithm Biometrika 85 1998 755 770
    • (1998) Biometrika , vol.85 , pp. 755-770
    • Liu, C.H.1    Rubin, D.B.2    Wu, Y.N.3
  • 18
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the em algorithm
    • T.A. Louis Finding the observed information matrix when using the EM algorithm J. Roy. Statist. Soc. Ser. B 44 1982 226 233
    • (1982) J. Roy. Statist. Soc. Ser. B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 20
    • 21344497135 scopus 로고
    • Maximum likelihood variance components estimation for binary data
    • C.E. McCulloch Maximum likelihood variance components estimation for binary data J. Amer. Statist. Assoc. 89 1994 330 335
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 330-335
    • McCulloch, C.E.1
  • 21
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear mixed models
    • C.E. McCulloch Maximum likelihood algorithms for generalized linear mixed models J. Amer. Statist. Assoc. 92 1997 162 170
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 162-170
    • McCulloch, C.E.1
  • 22
    • 18244387717 scopus 로고    scopus 로고
    • The em algorithm - An old folk song sung to a fast new tune (with discussion)
    • X.L. Meng, and D.A. van Dyk The EM algorithm - an old folk song sung to a fast new tune (with discussion) J. Roy. Statist. Soc. Ser. B 59 1997 511 567
    • (1997) J. Roy. Statist. Soc. Ser. B , vol.59 , pp. 511-567
    • Meng, X.L.1    Van Dyk, D.A.2
  • 24
    • 0033475401 scopus 로고    scopus 로고
    • Direct calculation of the information matrix via the em algorithm
    • D. Oakes Direct calculation of the information matrix via the EM algorithm J. Roy. Statist. Soc. Ser. B 61 1999 479 482
    • (1999) J. Roy. Statist. Soc. Ser. B , vol.61 , pp. 479-482
    • Oakes, D.1
  • 25
    • 0027056787 scopus 로고
    • Latent variable models for clustered dichotomous data with multiple subclusters
    • Y. Qu, G.W. Williams, G.J. Beck, and S.V. Medendorp Latent variable models for clustered dichotomous data with multiple subclusters Biometrics 48 1992 1095 1102
    • (1992) Biometrics , vol.48 , pp. 1095-1102
    • Qu, Y.1    Williams, G.W.2    Beck, G.J.3    Medendorp, S.V.4
  • 26
    • 0141754343 scopus 로고    scopus 로고
    • Improving generalised estimating equations using quadratic inference functions
    • A. Qu, B.G. Lindsay, and B. Li Improving generalised estimating equations using quadratic inference functions Biometrika 87 2000 823 836
    • (2000) Biometrika , vol.87 , pp. 823-836
    • Qu, A.1    Lindsay, B.G.2    Li, B.3
  • 27
    • 77950035264 scopus 로고    scopus 로고
    • Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation
    • S.W. Raudenbush, M.L. Yang, and M. Yosef Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation J. Comput. Graph. Statist. 9 2000 141 157
    • (2000) J. Comput. Graph. Statist. , vol.9 , pp. 141-157
    • Raudenbush, S.W.1    Yang, M.L.2    Yosef, M.3
  • 28
    • 84950788916 scopus 로고
    • Comments on the calculation of posterior distributions by data augmentation by M.A. Tanner and W.H. Wong
    • D.B. Rubin Comments on The calculation of posterior distributions by data augmentation by M.A. Tanner and W.H. Wong J. Amer. Statist. Assoc. 82 1987 543 546
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 543-546
    • Rubin, D.B.1
  • 29
    • 0000458272 scopus 로고
    • Using the SIR algorithm to simulate posterior distributions
    • Bernardo, J.M., DeGroot, M.H., Lindley, D.V., Smith, A.F.M. (Eds.) Oxford University Press, Oxford
    • Rubin, D.B., 1988. Using the SIR algorithm to simulate posterior distributions (with discussion). In: Bernardo, J.M., DeGroot, M.H., Lindley, D.V., Smith, A.F.M. (Eds.) Bayesian Statistics, vol. 3. Oxford University Press, Oxford, pp. 395-402.
    • (1988) Bayesian Statistics , vol.3 , pp. 395-402
    • Rubin, D.B.1
  • 30
    • 0242458500 scopus 로고    scopus 로고
    • Improved sampling-importance resampling and reduced bias importance sampling
    • O. Skare, E. Bølviken, and L. Holden Improved sampling-importance resampling and reduced bias importance sampling Scand. J. Statist. 30 2003 719 737
    • (2003) Scand. J. Statist. , vol.30 , pp. 719-737
    • Skare, O.1    Bølviken, E.2    Holden, L.3
  • 31
    • 0003174553 scopus 로고
    • Bayesian statistics without tears: A sampling-resampling perspective
    • A.F.M. Smith, and A.E. Gelfand Bayesian statistics without tears a sampling-resampling perspective Amer. Statist. 46 1992 84 88
    • (1992) Amer. Statist. , vol.46 , pp. 84-88
    • Smith, A.F.M.1    Gelfand, A.E.2
  • 32
    • 0021730579 scopus 로고
    • Random-effects models for serial observations with binary response
    • R. Stiratelli, N. Laird, and J.M. Ware Random-effects models for serial observations with binary response Biometrics 40 1984 961 971
    • (1984) Biometrics , vol.40 , pp. 961-971
    • Stiratelli, R.1    Laird, N.2    Ware, J.M.3
  • 33
    • 0031354405 scopus 로고    scopus 로고
    • Model diagnostics for marginal regression analysis of correlated binary data
    • M. Tan, Y. Qu, and M.H. Kutner Model diagnostics for marginal regression analysis of correlated binary data Comm. Statist. Simulation Comput. 26 1997 539 558
    • (1997) Comm. Statist. Simulation Comput. , vol.26 , pp. 539-558
    • Tan, M.1    Qu, Y.2    Kutner, M.H.3
  • 34
    • 0033566655 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for multi-level repeated ordinal data: Analysis of oral practice examinations in a large anaesthesiology training programme
    • M. Tan, Y. Qu, E. Mascha, and A. Schubert A Bayesian hierarchical model for multi-level repeated ordinal data analysis of oral practice examinations in a large anaesthesiology training programme Statist. Med. 18 1999 1983 1992
    • (1999) Statist. Med. , vol.18 , pp. 1983-1992
    • Tan, M.1    Qu, Y.2    Mascha, E.3    Schubert, A.4
  • 35
    • 0012546232 scopus 로고    scopus 로고
    • A noniterative sampling method for computing posteriors in the structure of EM-type algorithms
    • M. Tan, G.L. Tian, and K.W. Ng A noniterative sampling method for computing posteriors in the structure of EM-type algorithms Statist. Sinica 13 2003 625 639
    • (2003) Statist. Sinica , vol.13 , pp. 625-639
    • Tan, M.1    Tian, G.L.2    Ng, K.W.3
  • 37
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • M.A. Tanner, and W.H. Wong The calculation of posterior distributions by data augmentation (with discussion) J. Amer. Statist. Assoc. 82 1987 528 540
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 528-540
    • Tanner, M.A.1    Wong, W.H.2
  • 39
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the em algorithm and the poor man's data augmentation algorithm
    • G.C.G. Wei, and M.A. Tanner A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm J. Amer. Statist. Assoc. 85 1990 699 704
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 699-704
    • Wei, G.C.G.1    Tanner, M.A.2
  • 40
    • 84910906566 scopus 로고
    • Generalized linear models with random effects: A Gibbs sampling approach
    • S.L. Zeger, and M.R. Karim Generalized linear models with random effects a Gibbs sampling approach J. Amer. Statist. Assoc. 86 1991 79 86
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 79-86
    • Zeger, S.L.1    Karim, M.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.