-
1
-
-
0001236857
-
The discrete coagulation-fragmentation equations: Existence, uniqueness and density conservation
-
J. M. Ball and J. Carr, "The discrete coagulation-fragmentation equations: existence, uniqueness and density conservation," J. Statist. Phys., 61, 203-234 (1990).
-
(1990)
J. Statist. Phys.
, vol.61
, pp. 203-234
-
-
Ball, J.M.1
Carr, J.2
-
3
-
-
0242511215
-
On the Oort-Hulst-Safronov coagulation equation and its relation to the Smoluchowski equation
-
M. Lachowicz, P. Laurençot, and D. Wrzosek, "On the Oort-Hulst-Safronov coagulation equation and its relation to the Smoluchowski equation," SIAM J. Math. Anal., 34, No. 6, 1399-1421 (2003).
-
(2003)
SIAM J. Math. Anal.
, vol.34
, Issue.6
, pp. 1399-1421
-
-
Lachowicz, M.1
Laurençot, P.2
Wrzosek, D.3
-
4
-
-
0002552365
-
A nonlocal coagulation-fragmentation model
-
M. Lachowicz and D. Wrzosek, "A nonlocal coagulation-fragmentation model," Appl. Math. (Warsaw), 27, No. 1, 45-66 (2000).
-
(2000)
Appl. Math. (Warsaw)
, vol.27
, Issue.1
, pp. 45-66
-
-
Lachowicz, M.1
Wrzosek, D.2
-
5
-
-
0000267310
-
Versuch einer mathematischen theorie der kolloiden lösungen
-
M. Smoluchowski, "Versuch einer mathematischen Theorie der kolloiden Lösungen," Z. Phys. Chem., 92, 129-168 (1917).
-
(1917)
Z. Phys. Chem.
, vol.92
, pp. 129-168
-
-
Smoluchowski, M.1
-
6
-
-
0347081772
-
Nonlocal bilinear equations. Equilibrium solutions and diffusive limit
-
M. Lachowicz and D. Wrzosek, "Nonlocal bilinear equations. Equilibrium solutions and diffusive limit," Math. Models Methods Appl. Sci., 11, 1375-1390 (2001).
-
(2001)
Math. Models Methods Appl. Sci.
, vol.11
, pp. 1375-1390
-
-
Lachowicz, M.1
Wrzosek, D.2
-
7
-
-
0026932946
-
On the distribution of dominance in a population of interacting anonymous organisms
-
E. Jäger and L. Segel, "On the distribution of dominance in a population of interacting anonymous organisms," SIAM J. Appl. Math., 52, 1442-1468 (1992).
-
(1992)
SIAM J. Appl. Math.
, vol.52
, pp. 1442-1468
-
-
Jäger, E.1
Segel, L.2
-
8
-
-
21844501550
-
Population dynamics with stochastic interaction
-
L. Arlotti and N. Bellomo, "Population dynamics with stochastic interaction," Transp. Theory Statist. Phys., 24, 431-443 (1995).
-
(1995)
Transp. Theory Statist. Phys.
, vol.24
, pp. 431-443
-
-
Arlotti, L.1
Bellomo, N.2
-
9
-
-
0003054549
-
Solution of a new class of nonlinear kinetic models of population dynamics
-
L. Arlotti and N. Bellomo, "Solution of a new class of nonlinear kinetic models of population dynamics," Appl. Math. Lett., 9, 65-70 (1996).
-
(1996)
Appl. Math. Lett.
, vol.9
, pp. 65-70
-
-
Arlotti, L.1
Bellomo, N.2
-
10
-
-
0034355021
-
Kinetic equations modelling population dynamics
-
L. Arlotti, N. Bellomo, and M. Lachowicz, "Kinetic equations modelling population dynamics," Transp. Theory Statist. Phys., 29, 125-139 (2000).
-
(2000)
Transp. Theory Statist. Phys.
, vol.29
, pp. 125-139
-
-
Arlotti, L.1
Bellomo, N.2
Lachowicz, M.3
-
11
-
-
0344211073
-
An integrodifferential model for orientational distribution of F -Actin in cells
-
E. Geigant, K. Ladizhansky, and A. Mogilner, "An integrodifferential model for orientational distribution of F -Actin in cells," SIAM J. Appl. Math., 59, No. 3, 787-809 (1998).
-
(1998)
SIAM J. Appl. Math.
, vol.59
, Issue.3
, pp. 787-809
-
-
Geigant, E.1
Ladizhansky, K.2
Mogilner, A.3
-
12
-
-
0036056711
-
From microscopic to macroscopic description for generalized kinetic models
-
M. Lachowicz, "From microscopic to macroscopic description for generalized kinetic models," Math. Models Methods Appl. Sci., 12, No. 7, 985-1005 (2002).
-
(2002)
Math. Models Methods Appl. Sci.
, vol.12
, Issue.7
, pp. 985-1005
-
-
Lachowicz, M.1
-
13
-
-
18944381178
-
On bilinear kinetic equations. Between micro and macro descriptions of biological populations
-
M. Lachowicz, "On bilinear kinetic equations. Between micro and macro descriptions of biological populations," Banach Center Publ., 63, 217-230 (2004).
-
(2004)
Banach Center Publ.
, vol.63
, pp. 217-230
-
-
Lachowicz, M.1
-
15
-
-
0037905887
-
Probabilistic approach of some discrete and continuous coagulation equation with diffusion
-
M. Deaconu and N. Fournier, "Probabilistic approach of some discrete and continuous coagulation equation with diffusion," Stochast. Process. Appl., 101, 83-111 (2002).
-
(2002)
Stochast. Process. Appl.
, vol.101
, pp. 83-111
-
-
Deaconu, M.1
Fournier, N.2
-
16
-
-
21144461549
-
On the stochastic approach to cluster size distribution during particle coagulation
-
P. Donnelly and S. Simons, "On the stochastic approach to cluster size distribution during particle coagulation," J. Phys. A: Math. Gen., 26, 2755-2767 (1993).
-
(1993)
J. Phys. A: Math. Gen.
, vol.26
, pp. 2755-2767
-
-
Donnelly, P.1
Simons, S.2
-
17
-
-
0001051953
-
Smoluchowski's theory of coagulation in colloids holds rigorously in the Boltzmann-Grad limit
-
R. Lang and N. Xanh, "Smoluchowski's theory of coagulation in colloids holds rigorously in the Boltzmann-Grad limit," Z. Wahrscheinlichkeitstheor. r. Verw. Geb., 54, 227-280 (1980).
-
(1980)
Z. Wahrscheinlichkeitstheor. R. Verw. Geb.
, vol.54
, pp. 227-280
-
-
Lang, R.1
Xanh, N.2
-
19
-
-
0242510816
-
From microscopic to macroscopic descriptions of complex systems
-
M. Lachowicz, "From microscopic to macroscopic descriptions of complex systems," Comp. Rend. Mecanique (Paris), 331, 733-738 (2003).
-
(2003)
Comp. Rend. Mecanique (Paris)
, vol.331
, pp. 733-738
-
-
Lachowicz, M.1
-
20
-
-
0025567374
-
A stochastic particle system modeling the Euler equation
-
M. Lachowicz and M. Pulvirenti, "A stochastic particle system modeling the Euler equation," Arch. Ration. Mech. Anal., 109, No. 1, 81-93 (1990).
-
(1990)
Arch. Ration. Mech. Anal.
, vol.109
, Issue.1
, pp. 81-93
-
-
Lachowicz, M.1
Pulvirenti, M.2
-
21
-
-
28844464215
-
Hydrodynamic limit of coagulation-fragmentation type models of k-nary interacting particles
-
to appear
-
V. N. Kolokoltsov, "Hydrodynamic limit of coagulation-fragmentation type models of k-nary interacting particles," J. Statist. Phys. (to appear).
-
J. Statist. Phys.
-
-
Kolokoltsov, V.N.1
-
22
-
-
28844482747
-
On extension of mollified Boltzmann and Smoluchowski equations to particle systems with a k-nary interaction
-
to appear
-
V. N. Kolokoltsov, "On extension of mollified Boltzmann and Smoluchowski equations to particle systems with a k-nary interaction," Rus. J. Math. Phys. (to appear).
-
Rus. J. Math. Phys.
-
-
Kolokoltsov, V.N.1
|