-
1
-
-
0342647291
-
Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension
-
G. Fibich, and G. Papanicolaou Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension SIAM J. Appl. Math. 60 1999 183 240
-
(1999)
SIAM J. Appl. Math.
, vol.60
, pp. 183-240
-
-
Fibich, G.1
Papanicolaou, G.2
-
2
-
-
0003482633
-
-
American Mathematical Society Providence, R.I
-
W. Strauss Nonlinear Wave Equations 1989 American Mathematical Society Providence, R.I
-
(1989)
Nonlinear Wave Equations
-
-
Strauss, W.1
-
4
-
-
38249018099
-
n
-
M. Grillakis Existence of nodal solutions of semilinear equations in R N J. Differ. Equations 85 1990 367 400
-
(1990)
J. Differ. Equations
, vol.85
, pp. 367-400
-
-
Grillakis, M.1
-
6
-
-
0041473959
-
Nonlinear Schrödinger equations and sharp interpolation estimates
-
M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates Commun. Math. Phys. 87 1983 567 576
-
(1983)
Commun. Math. Phys.
, vol.87
, pp. 567-576
-
-
Weinstein, M.1
-
7
-
-
0014756759
-
Focusing of light in cubic media
-
V. Talanov Focusing of light in cubic media JETP Lett. 11 1970 199 201
-
(1970)
JETP Lett.
, vol.11
, pp. 199-201
-
-
Talanov, V.1
-
8
-
-
0006645185
-
Stability of isotropic singularities for the nonlinear Schrödinger equation
-
M. Landman, G. Papanicolaou, C. Sulem, P. Sulem, and X. Wang Stability of isotropic singularities for the nonlinear Schrödinger equation Physica D 47 1991 393 415
-
(1991)
Physica D
, vol.47
, pp. 393-415
-
-
Landman, M.1
Papanicolaou, G.2
Sulem, C.3
Sulem, P.4
Wang, X.5
-
10
-
-
0000548165
-
Asymptotic stability of manifold of self-similar solutions in self-focusing
-
G. Fraiman Asymptotic stability of manifold of self-similar solutions in self-focusing Sov. Phys. JETP 61 1985 228 233
-
(1985)
Sov. Phys. JETP
, vol.61
, pp. 228-233
-
-
Fraiman, G.1
-
11
-
-
0000893351
-
Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension
-
M. Landman, G. Papanicolaou, C. Sulem, and P. Sulem Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension Phys. Rev. A 38 1988 3837 3843
-
(1988)
Phys. Rev. A
, vol.38
, pp. 3837-3843
-
-
Landman, M.1
Papanicolaou, G.2
Sulem, C.3
Sulem, P.4
-
12
-
-
0002310685
-
The focusing singularity of the nonlinear Schrödinger equation
-
M. Grandall P. Rabinovitz R. Turner Academic Press New-York
-
B. LeMesurier, G. Papanicolaou, C. Sulem, and P. Sulem The focusing singularity of the nonlinear Schrödinger equation M. Grandall P. Rabinovitz R. Turner Directions in Partial Differential Equations 1987 Academic Press New-York 159 201
-
(1987)
Directions in Partial Differential Equations
, pp. 159-201
-
-
Lemesurier, B.1
Papanicolaou, G.2
Sulem, C.3
Sulem, P.4
-
13
-
-
0009156882
-
The nonlinear Schrödinger equation - Singularity formation, stability and dispersion
-
M. Weinstein The nonlinear Schrödinger equation - singularity formation, stability and dispersion Contemp. Math. 99 1989 213 232
-
(1989)
Contemp. Math.
, vol.99
, pp. 213-232
-
-
Weinstein, M.1
-
14
-
-
84972577314
-
Asymptotic profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power nonlinearity
-
H. Nawa Asymptotic profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power nonlinearity J. Math. Soc. Jpn. 46 1994 557 586
-
(1994)
J. Math. Soc. Jpn.
, vol.46
, pp. 557-586
-
-
Nawa, H.1
-
15
-
-
0033484486
-
Asymptotic and limiting profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power
-
H. Nawa Asymptotic and limiting profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power Commun. Pure Appl. Math. 52 1999 193 270
-
(1999)
Commun. Pure Appl. Math.
, vol.52
, pp. 193-270
-
-
Nawa, H.1
-
16
-
-
0041350485
-
Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation
-
F. Merle, and P. Raphael Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation Geom. Funct. Anal. 13 2003 591 642
-
(2003)
Geom. Funct. Anal.
, vol.13
, pp. 591-642
-
-
Merle, F.1
Raphael, P.2
-
17
-
-
2942586742
-
2 critical nonlinear Schrödinger equation
-
F. Merle, and P. Raphael On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation Invent. Math. 156 2004 565 672
-
(2004)
Invent. Math.
, vol.156
, pp. 565-672
-
-
Merle, F.1
Raphael, P.2
-
18
-
-
12444281836
-
Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation
-
F. Merle, and P. Raphael Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation Commun. Math. Phys. 253 2005 675 704
-
(2005)
Commun. Math. Phys.
, vol.253
, pp. 675-704
-
-
Merle, F.1
Raphael, P.2
-
19
-
-
0038804031
-
Self-similar optical wave collapse: Observation of the Townes profile
-
K. Moll, A. Gaeta, and G. Fibich Self-similar optical wave collapse: Observation of the Townes profile Phys. Rev. Lett. 90 2003 203902
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 203902
-
-
Moll, K.1
Gaeta, A.2
Fibich, G.3
-
20
-
-
0037367198
-
Filamentation patterns in Kerr media vs. beam shape robustness, nonlinear saturation and polarization states
-
L. Bergé, C. Gouédard, J. Schjodt-Eriksen, and H. Ward Filamentation patterns in Kerr media vs. beam shape robustness, nonlinear saturation and polarization states Physica D 176 2003 181 211
-
(2003)
Physica D
, vol.176
, pp. 181-211
-
-
Bergé, L.1
Gouédard, C.2
Schjodt-Eriksen, J.3
Ward, H.4
-
21
-
-
0036304184
-
Asymptotics of multibump blow-up self-similar solutions of the nonlinear Schrödinger equation
-
C.J. Budd Asymptotics of multibump blow-up self-similar solutions of the nonlinear Schrödinger equation SIAM J. Appl. Math. 62 2001 801 830
-
(2001)
SIAM J. Appl. Math.
, vol.62
, pp. 801-830
-
-
Budd, C.J.1
-
22
-
-
0001559598
-
1
-
T. Cazenave, and F. Weissler The Cauchy problem for the nonlinear Schrödinger equation in H 1 Manuscripta Math. 81 1988 477 498
-
(1988)
Manuscripta Math.
, vol.81
, pp. 477-498
-
-
Cazenave, T.1
Weissler, F.2
-
23
-
-
0030510597
-
Lower bounds for the blow-up rate of solutions of the Zakharov equation in dimension two
-
F. Merle Lower bounds for the blow-up rate of solutions of the Zakharov equation in dimension two Commun. Pure Appl. Math. 49 1996 765 794
-
(1996)
Commun. Pure Appl. Math.
, vol.49
, pp. 765-794
-
-
Merle, F.1
-
24
-
-
84971947811
-
On an elliptic equation related to the blow-up phenomenon in the nonlinear Schrödinger equation
-
R. Johnson, and X. Pan On an elliptic equation related to the blow-up phenomenon in the nonlinear Schrödinger equation Proc. R. Soc. Edinburgh Sect. A 123 1993 763 782
-
(1993)
Proc. R. Soc. Edinburgh Sect. A
, vol.123
, pp. 763-782
-
-
Johnson, R.1
Pan, X.2
-
25
-
-
2542465771
-
Multiple filamentation induced by input-beam ellipticity
-
A. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan Multiple filamentation induced by input-beam ellipticity Opt. Lett. 29 2004 1126 1128
-
(2004)
Opt. Lett.
, vol.29
, pp. 1126-1128
-
-
Dubietis, A.1
Tamošauskas, G.2
Fibich, G.3
Ilan, B.4
-
26
-
-
0038427340
-
On blow-up for the pseudo-conformally invariant nonlinear Schrödinger equation
-
H. Nawa, and M. Tsutsumi On blow-up for the pseudo-conformally invariant nonlinear Schrödinger equation Funkcial. Ekvac. 32 1989 417 428
-
(1989)
Funkcial. Ekvac.
, vol.32
, pp. 417-428
-
-
Nawa, H.1
Tsutsumi, M.2
-
27
-
-
0001678668
-
Local structure of the self-focusing singularity of the nonlinear Schrödinger equation
-
B. LeMesurier, G. Papanicolaou, C. Sulem, and P. Sulem Local structure of the self-focusing singularity of the nonlinear Schrödinger equation Physica D 32 1988 210 226
-
(1988)
Physica D
, vol.32
, pp. 210-226
-
-
Lemesurier, B.1
Papanicolaou, G.2
Sulem, C.3
Sulem, P.4
-
28
-
-
0040143939
-
Time dependent solutions of wave collapse
-
L. Bergé, and D. Pesme Time dependent solutions of wave collapse Phys. Lett. A 166 1992 116 122
-
(1992)
Phys. Lett. A
, vol.166
, pp. 116-122
-
-
Bergé, L.1
Pesme, D.2
-
29
-
-
27644563285
-
On collapsing solutions of the nonlinear Schrödinger equation in the supercritical case
-
R. Caflisch G. Papanicolaou, Singularities in Fluids, Plasmas and Optics. Kluwer Academic Publishers
-
V. Shvets, N.E. Kosmatov, and B.J. LeMesurier On collapsing solutions of the nonlinear Schrödinger equation in the supercritical case R. Caflisch G. Papanicolaou Singularities in Fluids, Plasmas and Optics NATO ASI Series vol. 404 1993 Kluwer Academic Publishers 671 692
-
(1993)
NATO ASI Series
, vol.404
, pp. 671-692
-
-
Shvets, V.1
Kosmatov, N.E.2
Lemesurier, B.J.3
-
30
-
-
0007375096
-
Dynamics of wave collapse in the critical case
-
V. Malkin Dynamics of wave collapse in the critical case Phys. Lett. A 151 1990 285 288
-
(1990)
Phys. Lett. A
, vol.151
, pp. 285-288
-
-
Malkin, V.1
-
31
-
-
85085846420
-
Observation of new singular solutions of the nonlinear Schrödinger equation
-
FC4, 6-7 September Dresden, Germany
-
T. Grow, A. Gaeta, G. Fibich, Observation of new singular solutions of the nonlinear Schrödinger equation, Nonlinear Guided Waves and Their Applications (NLGW 2005), FC4, 6-7 September 2005, Dresden, Germany.
-
(2005)
Nonlinear Guided Waves and Their Applications (NLGW 2005)
-
-
Grow, T.1
Gaeta, A.2
Fibich, G.3
-
32
-
-
44949272407
-
Computer simulation of wave collapses in the nonlinear Schrödinger equation
-
N. Kosmatov, V. Shvets, and V. Zakharov Computer simulation of wave collapses in the nonlinear Schrödinger equation Physica D 52 1991 16 35
-
(1991)
Physica D
, vol.52
, pp. 16-35
-
-
Kosmatov, N.1
Shvets, V.2
Zakharov, V.3
-
34
-
-
0001424722
-
An iterative grid redistribution method for singular problems in multiple dimensions
-
W. Ren, and X. Wang An iterative grid redistribution method for singular problems in multiple dimensions J. Comput. Phys. 159 2000 246 273
-
(2000)
J. Comput. Phys.
, vol.159
, pp. 246-273
-
-
Ren, W.1
Wang, X.2
-
35
-
-
42749106899
-
Numerical simulations of self focusing of ultrafast laser pulses
-
G. Fibich, W. Ren, and X. Wang Numerical simulations of self focusing of ultrafast laser pulses Phys. Rev. E 67 2003 056603
-
(2003)
Phys. Rev. e
, vol.67
, pp. 056603
-
-
Fibich, G.1
Ren, W.2
Wang, X.3
-
36
-
-
4544304033
-
A three-dimensional adaptive method based on the iterative grid redistribution
-
D. Wang, and X. Wang A three-dimensional adaptive method based on the iterative grid redistribution J. Comput. Phys. 199 2004 423 436
-
(2004)
J. Comput. Phys.
, vol.199
, pp. 423-436
-
-
Wang, D.1
Wang, X.2
|