-
1
-
-
51249192119
-
Domains on which analytic functions satisfy quadrature identities
-
AHARONOV, D. and SHAPIRO, H. S., Domains on which analytic functions satisfy quadrature identities, J. Anal. Math. 30 (1976), 39-73.
-
(1976)
J. Anal. Math.
, vol.30
, pp. 39-73
-
-
Aharonov, D.1
Shapiro, H.S.2
-
2
-
-
84973999869
-
The Szegö projection and the classical objects of potential theory in the plane
-
BELL, S. R., The Szegö projection and the classical objects of potential theory in the plane, Duke Math. J. 64 (1991), 1-26.
-
(1991)
Duke Math. J.
, vol.64
, pp. 1-26
-
-
Bell, S.R.1
-
3
-
-
0003758458
-
-
Studies in Advanced Mathematics, CRC Press, Boca Raton, FL
-
BELL, S. R., The Cauchy Transform, Potential Theory, and Conformal Mapping, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
-
(1992)
The Cauchy Transform, Potential Theory, and Conformal Mapping
-
-
Bell, S.R.1
-
4
-
-
0012338362
-
Unique continuation theorems for the ∂̄-operator and applications
-
BELL, S. R., Unique continuation theorems for the ∂̄-operator and applications, J. Geom. Anal. 3 (1993), 195-224.
-
(1993)
J. Geom. Anal.
, vol.3
, pp. 195-224
-
-
Bell, S.R.1
-
5
-
-
0012323710
-
Complexity of the classical kernel functions of potential theory
-
BELL, S. R., Complexity of the classical kernel functions of potential theory, Indiana Univ. Math. J. 44 (1995), 1337-1369.
-
(1995)
Indiana Univ. Math. J.
, vol.44
, pp. 1337-1369
-
-
Bell, S.R.1
-
6
-
-
0012279450
-
Finitely generated function fields and complexity in potential theory in the plane
-
BELL, S. R., Finitely generated function fields and complexity in potential theory in the plane, Duke Math. J. 98 (1999), 187-207.
-
(1999)
Duke Math. J.
, vol.98
, pp. 187-207
-
-
Bell, S.R.1
-
7
-
-
0012231184
-
Ahlfors maps, the double of a domain, and complexity in potential theory and conformal mapping
-
BELL, S. R., Ahlfors maps, the double of a domain, and complexity in potential theory and conformal mapping, J. Anal. Math. 78 (1999), 329-344.
-
(1999)
J. Anal. Math.
, vol.78
, pp. 329-344
-
-
Bell, S.R.1
-
8
-
-
0034412510
-
The fundamental role of the Szegö kernel in potential theory and complex analysis
-
BELL, S. R., The fundamental role of the Szegö kernel in potential theory and complex analysis, J. Reine Angew. Math. 525 (2000), 1-16.
-
(2000)
J. Reine Angew. Math.
, vol.525
, pp. 1-16
-
-
Bell, S.R.1
-
9
-
-
0036921150
-
Complexity in complex analysis
-
BELL, S. R., Complexity in complex analysis, Adv. Math. 172 (2002), 15-52.
-
(2002)
Adv. Math.
, vol.172
, pp. 15-52
-
-
Bell, S.R.1
-
10
-
-
0242596481
-
Möbius transformations, the Carathéodory metric, and the objects of complex analysis and potential theory in multiply connected domains
-
BELL, S. R., Möbius transformations, the Carathéodory metric, and the objects of complex analysis and potential theory in multiply connected domains, Michigan Math. J. 51 (2003), 351-362.
-
(2003)
Michigan Math. J.
, vol.51
, pp. 351-362
-
-
Bell, S.R.1
-
12
-
-
0000962690
-
Quadrature identities and the Schottky double
-
GUSTAFSSON, B., Quadrature identities and the Schottky double, Acta Appl. Math. 1 (1983), 209-240.
-
(1983)
Acta Appl. Math.
, vol.1
, pp. 209-240
-
-
Gustafsson, B.1
-
13
-
-
51249179241
-
Applications of half-order differentials on Riemann surfaces to quadrature identities for arc-length
-
GUSTAFSSON, B., Applications of half-order differentials on Riemann surfaces to quadrature identities for arc-length, J. Anal. Math. 49 (1987), 54-89.
-
(1987)
J. Anal. Math.
, vol.49
, pp. 54-89
-
-
Gustafsson, B.1
-
14
-
-
0041743820
-
Bell representations of finitely connected planar domains
-
JEONG, M. and TANIGUCHI, M., Bell representations of finitely connected planar domains, Proc. Amer. Math. Soc. 131 (2003), 2325-2328.
-
(2003)
Proc. Amer. Math. Soc.
, vol.131
, pp. 2325-2328
-
-
Jeong, M.1
Taniguchi, M.2
-
15
-
-
0003874764
-
-
Univ. of Arkansas Lecture Notes in the Mathematical Sciences, Wiley, New York
-
SHAPIRO, H. S., The Schwarz Function and its Generalization to Higher Dimensions, Univ. of Arkansas Lecture Notes in the Mathematical Sciences 9, Wiley, New York, 1992.
-
(1992)
The Schwarz Function and Its Generalization to Higher Dimensions
, vol.9
-
-
Shapiro, H.S.1
|