-
1
-
-
0036475447
-
A tutorial on particle filters for on-line non-linear/non-gaussian bayesian tracking
-
S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for on-line non-linear/non-gaussian bayesian tracking. Tran. on Signal Processing, 50(2):174-188, 2002.
-
(2002)
Tran. on Signal Processing
, vol.50
, Issue.2
, pp. 174-188
-
-
Arulampalam, S.1
Maskell, S.2
Gordon, N.3
Clapp, T.4
-
2
-
-
0038633569
-
Kernel-based object tracking
-
D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 25(5):564-577, 2003.
-
(2003)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.25
, Issue.5
, pp. 564-577
-
-
Comaniciu, D.1
Ramesh, V.2
Meer, P.3
-
4
-
-
0003838908
-
On sequential simulation-based methods for bayesian filtering
-
Cambridge University
-
A. Doucet. On sequential simulation-based methods for bayesian filtering. Technical Report TR310, Cambridge University, 1998.
-
(1998)
Technical Report
, vol.TR310
-
-
Doucet, A.1
-
5
-
-
0032136153
-
Condensation - Conditional density propagation for visual tracking
-
M. Isard and A. Blake. Condensation - conditional density propagation for visual tracking. International Journal of Computer Vision, 29(1):5-28, 1998.
-
(1998)
International Journal of Computer Vision
, vol.29
, Issue.1
, pp. 5-28
-
-
Isard, M.1
Blake, A.2
-
6
-
-
23044518830
-
How does condensation behave with a finite number of samples?
-
O. King and D. A. Forsyth. How does CONDENSATION behave with a finite number of samples? In 6th ECCV, Dublin, Ireland, volume 1, pages 695-709, 2000.
-
(2000)
6th ECCV, Dublin, Ireland
, vol.1
, pp. 695-709
-
-
King, O.1
Forsyth, D.A.2
-
7
-
-
0033283939
-
A probabilistic exclusion principle for tracking multiple objects
-
J. MacCormick and A. Blake. A probabilistic exclusion principle for tracking multiple objects. In ICCV, pages 572-578, 1999.
-
(1999)
ICCV
, pp. 572-578
-
-
MacCormick, J.1
Blake, A.2
-
8
-
-
0037428077
-
An adaptive color-based particle filter
-
K. Nummiaro, E. B. Koller-Meier, and L. Van Gool. An adaptive color-based particle filter. Image and Vision Computing, 21(1):99-110, 2003.
-
(2003)
Image and Vision Computing
, vol.21
, Issue.1
, pp. 99-110
-
-
Nummiaro, K.1
Koller-Meier, E.B.2
Van Gool, L.3
-
9
-
-
27244448862
-
Probabilistic image-based tracking: Improving particle filtering
-
D. Rowe, I. Rius, J. Gonzàlez, X. Roca, and J.J. Villanueva. Probabilistic Image-based Tracking: Improving Particle Filtering. In 2nd IbPRIA, Estoril, Portugal, 2005.
-
(2005)
2nd IbPRIA, Estoril, Portugal
-
-
Rowe, D.1
Rius, I.2
Gonzàlez, J.3
Roca, X.4
Villanueva, J.J.5
-
11
-
-
0004286947
-
The unscented particle filter
-
Cambridge University
-
R. van der Merwe, N. de Freitas, A. Doucet, and E. Wan. The Unscented Particle Filter. Technical Report TR380, Cambridge University, 2000.
-
(2000)
Technical Report
, vol.TR380
-
-
Van Der Merwe, R.1
De Freitas, N.2
Doucet, A.3
Wan, E.4
-
12
-
-
34249903684
-
ITrack: Image-based probabilistic tracking of people
-
X. Varona, J. Gonzàlez, X. Roca, and J.J. Villanueva. iTrack: Image-based Probabilistic Tracking of People. In 15th ICPR, Barcelona, Spain, volume 3, pages 1110-1113, 2000.
-
(2000)
15th ICPR, Barcelona, Spain
, vol.3
, pp. 1110-1113
-
-
Varona, X.1
Gonzàlez, J.2
Roca, X.3
Villanueva, J.J.4
|