-
2
-
-
84901465622
-
A novel approach to detection of "denial-of-service" attacks via adaptive sequential and batch-sequential change-point detection methods
-
Submitted
-
R. Blazek, H. Kim, B. Rozovskii, and A. Tartakovsky, "A novel approach to detection of "denial-of-service" attacks via adaptive sequential and batch-sequential change-point detection methods," IEEE Transactions on Systems, Man, and Cybernetics, Submitted 2002.
-
(2002)
IEEE Transactions on Systems, Man, and Cybernetics
-
-
Blazek, R.1
Kim, H.2
Rozovskii, B.3
Tartakovsky, A.4
-
3
-
-
84901437673
-
-
CERT, UDP Packet Storm; TCP SYN Flooding and IP Spoofing Attacks. CERT Advisory CA-1996-01 and CA-96.21
-
CERT, UDP Packet Storm; TCP SYN Flooding and IP Spoofing Attacks. CERT Advisory CA-1996-01 and CA-96.21, 1996.
-
(1996)
-
-
-
4
-
-
0033349954
-
Multihypothesis sequential probability ratio tests, i: Asymptotic optimality
-
V.P. Dragalin, A.G. Tartakovsky, and V.V. Veeravalli, "Multihypothesis sequential probability ratio tests, I: asymptotic optimality," IEEE Trans. Inform. Theory, Vol. 45, pp. 2448-2461, 1999.
-
(1999)
IEEE Trans. Inform. Theory
, vol.45
, pp. 2448-2461
-
-
Dragalin, V.P.1
Tartakovsky, A.G.2
Veeravalli, V.V.3
-
5
-
-
0034588633
-
On the trial of intrusions into information systems
-
S. Kent, "On the trial of intrusions into information systems," IEEE Spectrum, pp. 52-56, 2000.
-
(2000)
IEEE Spectrum
, pp. 52-56
-
-
Kent, S.1
-
6
-
-
0001166817
-
On r-quick convergence and a conjecture of strassen
-
T.L. Lai, "On r-quick convergence and a conjecture of Strassen," Ann. Probability, Vol. 4, pp. 612-627, 1976.
-
(1976)
Ann. Probability
, vol.4
, pp. 612-627
-
-
Lai, T.L.1
-
7
-
-
0001524507
-
Procedures for reacting to a change in distribution
-
G. Lorden, "Procedures for reacting to a change in distribution," Ann. Math. Statist., Vol. 42, pp. 1987-1908, 1971.
-
(1971)
Ann. Math. Statist.
, vol.42
, pp. 1987-1908
-
-
Lorden, G.1
-
8
-
-
0000783098
-
Optimal detection of a change in distribution
-
M. Pollak, "Optimal detection of a change in distribution," A. Statist., Vol. 13, pp. 206-227, 1985.
-
(1985)
A. Statist.
, vol.13
, pp. 206-227
-
-
Pollak, M.1
-
9
-
-
0010458140
-
Average run lengths of an optimal method of detecting a change in distribution
-
M. Pollak, "Average run lengths of an optimal method of detecting a change in distribution," Ann. Statist., Vol. 15, pp. 749-779, 1987.
-
(1987)
Ann. Statist.
, vol.15
, pp. 749-779
-
-
Pollak, M.1
-
10
-
-
0002196122
-
On optimum methods in quickest detection problems
-
A.N. Shiryaev, "On optimum methods in quickest detection problems," Theory Probab. Appl, Vol. 8, pp. 22-6, 1963.
-
(1963)
Theory Probab. Appl
, vol.8
, pp. 22-26
-
-
Shiryaev, A.N.1
-
13
-
-
27144439689
-
Asymptotically minimax multi-alternative sequential rule for disorder detection
-
AMS, Providence, Rhode Island
-
A.G. Tartakovsky, "Asymptotically minimax multi-alternative sequential rule for disorder detection," In Statistics and Control of Random Processes: Proc. Steklov Institute of Mathematics, Vol. 202, Issue 4, pp. 229-236, 1994. AMS, Providence, Rhode Island.
-
(1994)
Statistics and Control of Random Processes: Proc. Steklov Institute of Mathematics
, vol.202
, Issue.4
, pp. 229-236
-
-
Tartakovsky, A.G.1
-
14
-
-
84901402315
-
Extended asymptotic optimality of certain change-point detection procedures
-
Submitted
-
A.G. Tartakovsky, "Extended asymptotic optimality of certain change-point detection procedures," Ann. Statist., Submitted.
-
Ann. Statist
-
-
Tartakovsky, A.G.1
-
15
-
-
0027580482
-
Extremal properties of likelihood-ratio quantizers
-
J.N. Tsitsiklis, "Extremal properties of likelihood-ratio quantizers," IEEE Trans. Commun., Vol. 41, No. 4, pp. 550-558, 1993.
-
(1993)
IEEE Trans. Commun.
, vol.41
, Issue.4
, pp. 550-558
-
-
Tsitsiklis, J.N.1
-
16
-
-
0035334718
-
Decentralized quickest change detection
-
V.V. Veeravalli, "Decentralized quickest change detection," IEEE Trans. Inform. Theory, Vol. 47, pp. 1657-1665, 2001.
-
(2001)
IEEE Trans. Inform. Theory
, vol.47
, pp. 1657-1665
-
-
Veeravalli, V.V.1
|