-
1
-
-
0000990727
-
A new bound for the Quadratic Assignment Problem based on convex quadratic programming
-
K. Anstreicher and N. Brixius. A New Bound for the Quadratic Assignment Problem Based on Convex Quadratic Programming. Math. Prog. 89:341-357, 2001.
-
(2001)
Math. Prog.
, vol.89
, pp. 341-357
-
-
Anstreicher, K.1
Brixius, N.2
-
2
-
-
0346448292
-
Best reduction of the quadratic semi-assignment problem
-
A. Billionnet and S. Elloumi. Best reduction of the quadratic semi-assignment problem. Discrete Applied Mathematics 109(3): 197-213, 2001.
-
(2001)
Discrete Applied Mathematics
, vol.109
, Issue.3
, pp. 197-213
-
-
Billionnet, A.1
Elloumi, S.2
-
3
-
-
0242611664
-
Un algorithme de génération de coupes pour le problème de l'affectation quadratique
-
A. Blanchard, S. Elloumi, A. Faye and N. Wicker. Un algorithme de génération de coupes pour le problème de l'affectation quadratique. INFOR 41(1):35-49, 2003.
-
(2003)
INFOR
, vol.41
, Issue.1
, pp. 35-49
-
-
Blanchard, A.1
Elloumi, S.2
Faye, A.3
Wicker, N.4
-
6
-
-
27144528483
-
Partial lagrangian and semidefinite relaxations of quadratic problems
-
proceedings ROADEF'2005, Tours, 14-16 february
-
A. Faye and F. Roupin. Partial Lagrangian and Semidefinite Relaxations of Quadratic Problems. In proceedings ROADEF'2005, Tours, 14-16 february 2005. Research report RC673, available at http://cedric.cnam.fr.
-
(2005)
Research Report
, vol.RC673
-
-
Faye, A.1
Roupin, F.2
-
7
-
-
0041353723
-
Solving quadratic (0,1)-problems by semidefinite programs and cutting planes
-
C. Helmberg and F. Rendl. Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math. Progr. 82(3,A):291-315, 1998.
-
(1998)
Math. Progr.
, vol.82
, Issue.3 A
, pp. 291-315
-
-
Helmberg, C.1
Rendl, F.2
-
8
-
-
0005740806
-
Semidefinite programming for combinatorial optimization
-
Habilitationsschrift, TU Berlin, KZZI, Takustraße 7, 14195 Berlin, Germany
-
C. Helmberg. Semidefinite Programming for Combinatorial Optimization. Habilitationsschrift, TU Berlin, ZIB-report ZR-00-34, KZZI, Takustraße 7, 14195 Berlin, Germany, 2000.
-
(2000)
ZIB-report
, vol.ZR-00-34
-
-
Helmberg, C.1
-
9
-
-
0034415006
-
A spectral bundle method for semidefinite programming
-
C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming. SIAM J. Optim. 10(3):673-696, 2000.
-
(2000)
SIAM J. Optim.
, vol.10
, Issue.3
, pp. 673-696
-
-
Helmberg, C.1
Rendl, F.2
-
11
-
-
10844257748
-
Cutting planes algorithm for large scale semidefinite relaxations
-
KZZI, Takustraße 7, 14195 Berlin, Germany
-
C. Helmberg. Cutting planes algorithm for large scale semidefinite relaxations. ZIB-Report ZR 01-26, KZZI, Takustraße 7, 14195 Berlin, Germany, 2001.
-
(2001)
ZIB-report
, vol.ZR 01-26
-
-
Helmberg, C.1
-
12
-
-
14844355148
-
SDP_S: A tool to formulate and solve semidefinite relaxations for bivalent quadratic problems
-
Avignon 26-28 Février
-
G. Delaporte, S. Jouteau and F. Roupin. SDP_S: a Tool to formulate and solve Semidefinite relaxations for Bivalent Quadratic problems. In Proceedings ROADEF 2003, Avignon 26-28 F́vrier, 2003.http://semidef.free.fr.
-
(2003)
Proceedings ROADEF 2003
-
-
Delaporte, G.1
Jouteau, S.2
Roupin, F.3
-
15
-
-
3142688043
-
An independent benchmarking of SDP and SOCP solvers
-
Hans D. Mittelmann. An Independent Benchmarking of SDP and SOCP Solvers. Math. Progr. 95(2).-407-430, 2003.
-
(2003)
Math. Progr.
, vol.95
, Issue.2
, pp. 407-430
-
-
Mittelmann, H.D.1
-
16
-
-
0002821681
-
A recipe for semidefinite relaxation for (0,1)-quadratic programming
-
S. Poljak, F. Rendl and H. Wolkowicz. A recipe for semidefinite relaxation for (0,1)-quadratic programming. J. of Global Opt. 7:51-73, 1995.
-
(1995)
J. of Global Opt.
, vol.7
, pp. 51-73
-
-
Poljak, S.1
Rendl, F.2
Wolkowicz, H.3
-
17
-
-
21644440235
-
Bounds for the Quadratic Assignment Problem using the bundle method
-
University Of Klagenfurt, Universitaetsstrasse 65-67, Austria, Available at Optimization-online.org
-
F. Rendl and R. Sotirov. Bounds for the Quadratic Assignment Problem Using the Bundle Method. Research Report, University Of Klagenfurt, Universitaetsstrasse 65-67, Austria, 2003. Available at Optimization-online.org.
-
(2003)
Research Report
-
-
Rendl, F.1
Sotirov, R.2
-
18
-
-
0000138587
-
Computing lower bounds for the quadratic assignment problem with an interior point algorithm for linear programming
-
M.G.C Resende, K.G. Ramakrishnan, and Z. Drezner. Computing lower bounds for the quadratic assignment problem with an interior point algorithm for linear programming. Operations Research 43(5):781-791, 1995.
-
(1995)
Operations Research
, vol.43
, Issue.5
, pp. 781-791
-
-
Resende, M.G.C.1
Ramakrishnan, K.G.2
Drezner, Z.3
-
19
-
-
14844362280
-
From linear to semidefinite programming: An algorithm to obtain semidefinite relaxations for bivalent quadratic problems
-
F. Roupin. From Linear to Semidefinite Programming: an Algorithm to obtain Semidefinite Relaxations for Bivalent Quadratic Problems. J. of Comb. Opt. 8(4):469-493, 2004.
-
(2004)
J. of Comb. Opt.
, vol.8
, Issue.4
, pp. 469-493
-
-
Roupin, F.1
-
20
-
-
0003072982
-
Semidefinite programming relaxations for the quadratic assignment problem
-
Q. Zhao, S.E. Karisch, F. Rendl and H. Wolkowicz. Semidefinite programming relaxations for the quadratic assignment problem. J. of Comb. Opt. 2(1):71-109, 1998.
-
(1998)
J. of Comb. Opt.
, vol.2
, Issue.1
, pp. 71-109
-
-
Zhao, Q.1
Karisch, S.E.2
Rendl, F.3
Wolkowicz, H.4
|