-
1
-
-
0036147911
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.65.012107
-
M. Seevinck and J. Uffink, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.65.012107 65, 012107 (2002).
-
(2002)
Phys. Rev. A
, vol.65
, pp. 012107
-
-
Seevinck, M.1
Uffink, J.2
-
2
-
-
27144551878
-
-
Consequently, a mixed state is called biseparable (fully separable) if it is the mixture of pure biseparable (fully separable) states.
-
Consequently, a mixed state is called biseparable (fully separable) if it is the mixture of pure biseparable (fully separable) states.
-
-
-
-
3
-
-
4243653792
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.65.1838
-
N. D. Mermin, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.65. 1838 65, 1838 (1990).
-
(1990)
Phys. Rev. Lett.
, vol.65
, pp. 1838
-
-
Mermin, N.D.1
-
4
-
-
18144423496
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.94.060501
-
For a different proof see Geza Toth and Otfried Guhne, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.060501 94, 060501 (2005);
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 060501
-
-
Toth, G.1
Guhne, O.2
-
5
-
-
27144504639
-
-
quant-ph/0501020.
-
Geza Toth and Otfried Guhne, quant-ph/0501020.
-
-
-
Toth, G.1
Guhne, O.2
-
6
-
-
0042579647
-
-
PYLAAG 0375-9601 10.1016/S0375-9601(98)00516-7
-
N. Gisin and H. Bechmann-Pasquinucci, Phys. Lett. A PYLAAG 0375-9601 10.1016/S0375-9601(98)00516-7 246, 1 (1998).
-
(1998)
Phys. Lett. A
, vol.246
, pp. 1
-
-
Gisin, N.1
Bechmann-Pasquinucci, H.2
-
7
-
-
0037192997
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.88.170405
-
D. Collins, N. Gisin, S. Popescu, D. Roberts, and V. Scarani, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.88.170405 88, 170405 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 170405
-
-
Collins, D.1
Gisin, N.2
Popescu, S.3
Roberts, D.4
Scarani, V.5
-
8
-
-
0034598776
-
-
NATUAS 0028-0836 10.1038/35000514
-
J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, Nature (London) NATUAS 0028-0836 10.1038/35000514 403, 515 (2000);
-
(2000)
Nature (London)
, vol.403
, pp. 515
-
-
Pan, J.-W.1
Bouwmeester, D.2
Daniell, M.3
Weinfurter, H.4
Zeilinger, A.5
-
10
-
-
0037054189
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.88.230406
-
This can be proved as follows. Let us take 8 to be a 4-4 matrix in the usual Z(k) basis, with matrix elements 8 kl with k,l=1,2,3,4. Then 88\'a3\parv1'e2\'88\'a32=('e2\'9f\'a8X(1)X(2)'e2\'88\rquote Y(1)Y(2)'e2\'9f\'a9\ 'cf\'81)2+('e2\'9f\'a8X(1)Y(2)+Y(1)X(2)'e2\'9f\'a9\'cf\'81)2=16'cf\'8114'cf\ '8141'e2\'a9\'bd4. The last inequality is valid since 'e2\'88\'a3'cf\'8114'e2\ '88\'a3=\'e2\'88\'a3'cf\'8141'e2\'88\'a3'e2\'a9\'bd1 2 is required for physically meaningful density matrices. See also Eq. (3) of J. Uffink, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.88.230406 88, 230406 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 230406
-
-
Uffink, J.1
-
11
-
-
0036542260
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.65.042314
-
We note that in a long calculation using the fidelity criterion, K. Nagata, M. Koashi, and N. Imoto, proved that the experiment contained three-particle entanglement but without using the Mermin inequality: K. Nagata, M. Koashi, and N. Imoto, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.65. 042314 65, 042314 (2002);
-
(2002)
Phys. Rev. A
, vol.65
, pp. 042314
-
-
Nagata, K.1
Koashi, M.2
Imoto, N.3
-
12
-
-
84856122904
-
-
as we have recently been informed in a calculation different from ours, K. Nagata, M. Koashi, and N. Imoto, also obtained the here presented bound for the Mermin inequality in an unpublished work to be found at http://www.qci.jst. go.jp/eqis02/program/abstract/poster11.pdf.
-
-
-
Nagata, K.1
Koashi, M.2
Imoto, N.3
-
13
-
-
0037165016
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.89.260401
-
The bound, while not explicitly stated, can straightforwardly be obtained from K. Nagata, M. Koashi, and N. Imoto, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.89.260401 89, 260401 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 260401
-
-
Nagata, K.1
Koashi, M.2
Imoto, N.3
|