-
1
-
-
0003639558
-
-
G. Brassard, P. Høyer, M. Mosca, A. Tapp, Quantum amplitude amplification and estimation, 2000, http://arXiv.org/abs/quant-ph/0005055.
-
(2000)
Quantum Amplitude Amplification and Estimation
-
-
Brassard, G.1
Høyer, P.2
Mosca, M.3
Tapp, A.4
-
2
-
-
1842836091
-
A class of optimal-order zero-finding methods using derivative evaluations
-
J.F. Traub Academic Press New York
-
R.P. Brent A class of optimal-order zero-finding methods using derivative evaluations J.F. Traub Analytic Computational Complexity 1976 Academic Press New York 59 73
-
(1976)
Analytic Computational Complexity
, pp. 59-73
-
-
Brent, R.P.1
-
3
-
-
0036225247
-
Quantum summation with an application to integration
-
S. Heinrich Quantum summation with an application to integration J. Complexity 18 2002 1 50
-
(2002)
J. Complexity
, vol.18
, pp. 1-50
-
-
Heinrich, S.1
-
4
-
-
1242322161
-
p spaces
-
S. Heinrich, Quantum approximation I. Embeddings of finite dimensional L p spaces, J. Complexity 20 (2004) 5-26; see also http://arXiv.org/abs/quant-ph/ 0305030.
-
(2004)
J. Complexity
, vol.20
, pp. 5-26
-
-
Heinrich, S.1
-
5
-
-
1242277383
-
Quantum approximation II. Sobolev embeddings
-
S. Heinrich, Quantum approximation II. Sobolev embeddings, J. Complexity 20 (2004) 27-45; see also http://arXiv.org/abs/quant-ph/0305031.
-
(2004)
J. Complexity
, vol.20
, pp. 27-45
-
-
Heinrich, S.1
-
6
-
-
0002121573
-
Optimal summation and integration by deterministic, randomized, and quantum algorithms
-
K.-T. Fang, F.J. Hickernell, H. Niederreiter (Eds.) Springer, Berlin
-
S. Heinrich, E. Novak, Optimal summation and integration by deterministic, randomized, and quantum algorithms, in: K.-T. Fang, F.J. Hickernell, H. Niederreiter (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2000, Springer, Berlin, 2002, pp. 50-62; see also http://arXiv.org/abs/quant-ph/ 0105114.
-
(2002)
Monte Carlo and Quasi-Monte Carlo Methods 2000
, pp. 50-62
-
-
Heinrich, S.1
Novak, E.2
-
7
-
-
0001949376
-
How to increase the order to get minimal-error algorithms for systems of ODEs
-
B. Kacewicz How to increase the order to get minimal-error algorithms for systems of ODEs Numer. Math. 45 1984 93 104
-
(1984)
Numer. Math.
, vol.45
, pp. 93-104
-
-
Kacewicz, B.1
-
8
-
-
10244234121
-
Randomized and quantum algorithms yield a speed-up for initial-value problems
-
B. Kacewicz, Randomized and quantum algorithms yield a speed-up for initial-value problems, J. Complexity 20 (2004) 821-834; see also http://arXiv.org/abs/quant-ph/0311148.
-
(2004)
J. Complexity
, vol.20
, pp. 821-834
-
-
Kacewicz, B.1
-
10
-
-
0003211763
-
Deterministic and stochastic error bounds in numerical analysis
-
Springer, Berlin
-
E. Novak, Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Mathematics, vol. 1349, Springer, Berlin, 1988.
-
(1988)
Lecture Notes in Mathematics
, vol.1349
-
-
Novak, E.1
-
11
-
-
0035294716
-
Quantum complexity of integration
-
E. Novak, Quantum complexity of integration, J. Complexity 17 (2001) 2-16; see also http://arXiv.org/abs/quant-ph/0008124.
-
(2001)
J. Complexity
, vol.17
, pp. 2-16
-
-
Novak, E.1
-
12
-
-
4444253918
-
Path integration on a quantum computer
-
J.F. Traub, H. Woźniakowski, Path integration on a quantum computer, Quantum Inform. Process. 1 (5) (2003) 365-388; see also http://arXiv.org/abs/quant-ph/0109113.
-
(2003)
Quantum Inform. Process.
, vol.1
, Issue.5
, pp. 365-388
-
-
Traub, J.F.1
Woźniakowski, H.2
|