메뉴 건너뛰기




Volumn 37, Issue 3, 2005, Pages 819-835

Ruin in the perturbed compound Poisson risk process under interest force

Author keywords

Brownian motion; Compound Poisson risk process; Confluent hypergeometric function; Diffusion; Hamilton Jacobi Bellman equation; Jump diffusion process; Kummer's confluent hypergeometric equation; Ruin probability; Viscosity solution

Indexed keywords

BOUNDARY CONDITIONS; BROWNIAN MOVEMENT; DIFFERENTIATION (CALCULUS); INTEGRODIFFERENTIAL EQUATIONS; MATHEMATICAL MODELS; PERTURBATION TECHNIQUES; PROBABILITY DENSITY FUNCTION; RANDOM PROCESSES; THEOREM PROVING;

EID: 27144473473     PISSN: 00018678     EISSN: None     Source Type: Journal    
DOI: 10.1239/aap/1127483749     Document Type: Article
Times cited : (39)

References (17)
  • 2
    • 2542499687 scopus 로고    scopus 로고
    • Ruin probabilities and penalty functions with stochastic rates of interest
    • Cai, J. (2004). Ruin probabilities and penalty functions with stochastic rates of interest. Stock Process. Appl. 112, 53-78.
    • (2004) Stock Process. Appl. , vol.112 , pp. 53-78
    • Cai, J.1
  • 3
    • 0036334068 scopus 로고    scopus 로고
    • On the expected discounted penalty function at ruin of a surplus process with interest
    • Cai, J. and Dickson, D. C. M. (2002). On the expected discounted penalty function at ruin of a surplus process with interest. Insurance Math. Econom. 30, 389-404.
    • (2002) Insurance Math. Econom. , vol.30 , pp. 389-404
    • Cai, J.1    Dickson, D.C.M.2
  • 4
    • 84967758647 scopus 로고
    • Viscosity solutions of Hamilton-Jacobi equations
    • Crandall, M. G. and Lions, P. L. (1983). Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277, 1-42.
    • (1983) Trans. Amer. Math. Soc. , vol.277 , pp. 1-42
    • Crandall, M.G.1    Lions, P.L.2
  • 5
    • 84967708673 scopus 로고
    • User's guide to viscosity solutions of second order partial differential equations
    • Crandall, M. G., Ishii, H. and Lions, P.-L. (1992). User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27, 1-67.
    • (1992) Bull. Amer. Math. Soc. , vol.27 , pp. 1-67
    • Crandall, M.G.1    Ishii, H.2    Lions, P.-L.3
  • 6
    • 0001912797 scopus 로고
    • Risk theory for the compound Poisson process that is perturbed by diffusion
    • Dufresne, F. and Gerber, H. U. (1991). Risk theory for the compound Poisson process that is perturbed by diffusion. Insurance Math. Econom. 10, 51-59.
    • (1991) Insurance Math. Econom. , vol.10 , pp. 51-59
    • Dufresne, F.1    Gerber, H.U.2
  • 8
    • 0032113775 scopus 로고    scopus 로고
    • On the discounted penalty at ruin in a jump-diffusion and the perpetual put option
    • Gerber, H. U. and Landry, B. (1998). On the discounted penalty at ruin in a jump-diffusion and the perpetual put option, Insurance Math. Econom. 22, 263-276.
    • (1998) Insurance Math. Econom. , vol.22 , pp. 263-276
    • Gerber, H.U.1    Landry, B.2
  • 10
    • 4344574467 scopus 로고    scopus 로고
    • Optimal investment for investors with state dependent income, and for insurers
    • Hipp, C. and Plum, M. (2003). Optimal investment for investors with state dependent income, and for insurers. Finance Stoch. 7, 299-321.
    • (2003) Finance Stoch. , vol.7 , pp. 299-321
    • Hipp, C.1    Plum, M.2
  • 11
    • 0031349836 scopus 로고    scopus 로고
    • Ruin theory with stochastic economic environment
    • Paulsen, J. and Gjessing, H. K. (1997). Ruin theory with stochastic economic environment. Adv. Appl. Prob. 29, 965-985.
    • (1997) Adv. Appl. Prob. , vol.29 , pp. 965-985
    • Paulsen, J.1    Gjessing, H.K.2
  • 14
  • 15
    • 0008662323 scopus 로고    scopus 로고
    • A decomposition of the ruin probability for the risk process perturbed by diffusion
    • Wang, G. (2001). A decomposition of the ruin probability for the risk process perturbed by diffusion, Insurance Math. Econom. 28, 49-59.
    • (2001) Insurance Math. Econom. , vol.28 , pp. 49-59
    • Wang, G.1
  • 16
    • 0043094441 scopus 로고    scopus 로고
    • Distributions for the risk process with a stochastic return on investments
    • Wang, G. and Wu, R. (2001). Distributions for the risk process with a stochastic return on investments. Stoch. Process. Appl. 95, 329-341.
    • (2001) Stoch. Process. Appl. , vol.95 , pp. 329-341
    • Wang, G.1    Wu, R.2
  • 17
    • 0035272526 scopus 로고    scopus 로고
    • Spectrally negative Lévy processes with applications in risk theory
    • Yang, H. L. and Zhang, L. (2001). Spectrally negative Lévy processes with applications in risk theory, Adv. Appl. Prob. 33, 281-291.
    • (2001) Adv. Appl. Prob. , vol.33 , pp. 281-291
    • Yang, H.L.1    Zhang, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.