메뉴 건너뛰기




Volumn , Issue , 2005, Pages 1503-1514

Procost - Towards a powerful early stage cost estimating tool

Author keywords

Artificial neural networks; Cost estimating; Cost modelling; Elemental estimating; Regression analysis

Indexed keywords

COSTS; DATABASE SYSTEMS; NEURAL NETWORKS;

EID: 27144471702     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (9)

References (23)
  • 1
    • 2242459831 scopus 로고    scopus 로고
    • Analysis of factors influencing project cost estimating practice
    • Akintoye A. (2000). Analysis of factors influencing project cost estimating practice. Construction Management and Economics. 18, 77-89
    • (2000) Construction Management and Economics , vol.18 , pp. 77-89
    • Akintoye, A.1
  • 2
    • 22544463068 scopus 로고
    • Cost modeling for the construction industry
    • July 1981
    • Ashworth (1981) Cost modeling for the construction industry. Quantity Surveyor, vol.37, July 1981
    • (1981) Quantity Surveyor , vol.37
    • Ashworth1
  • 3
    • 27144490625 scopus 로고
    • Cost models - Their history development and appraisal
    • CIOB
    • Ashworth A. (1986). Cost models - Their history development and appraisal, Technical Information Service No. 64, CIOB
    • (1986) Technical Information Service No. 64 , vol.64
    • Ashworth, A.1
  • 5
    • 0001292966 scopus 로고    scopus 로고
    • The use of artificial neural networks in construction management: A review
    • Boussabaine A.H. (1996). The use of artificial neural networks in construction management: a review. Construction Management and Economics, 14, 427-436
    • (1996) Construction Management and Economics , vol.14 , pp. 427-436
    • Boussabaine, A.H.1
  • 8
    • 0036744325 scopus 로고    scopus 로고
    • Data modeling and the application of a neural network approach to the prediction of total construction costs
    • Emsley M.W., Lowe D.J., Duff A. R., Harding A., Hickson A. (2002). Data modeling and the application of a neural network approach to the prediction of total construction costs. Construction Management and Economics, 20, 465-472
    • (2002) Construction Management and Economics , vol.20 , pp. 465-472
    • Emsley, M.W.1    Lowe, D.J.2    Duff, A.R.3    Harding, A.4    Hickson, A.5
  • 11
    • 25444501609 scopus 로고    scopus 로고
    • The relative performance of new and traditional cost models in strategic advice for clients
    • March
    • Fortune C. and Lees M. (1996). The relative performance of new and traditional cost models in strategic advice for clients. RICS research paper series, Volume 2, Number 2, March.
    • (1996) RICS Research Paper Series , vol.2 , pp. 2
    • Fortune, C.1    Lees, M.2
  • 12
    • 3242891065 scopus 로고    scopus 로고
    • A neural network approach for early cost estimation of structural systems of buildings
    • Gunaydin H.M., Dogan S.Z. (2004), A neural network approach for early cost estimation of structural systems of buildings. Internaltional journal of project management, 22, 596-602
    • (2004) Internaltional Journal of Project Management , vol.22 , pp. 596-602
    • Gunaydin, H.M.1    Dogan, S.Z.2
  • 17
    • 0035388101 scopus 로고    scopus 로고
    • Neural network design for engineering applications
    • Rafiq M.Y., Bugmann G., Easterbrook D.J. (2001). Neural network design for engineering applications. Comput. Struct, 79, 1541-52
    • (2001) Comput. Struct , vol.79 , pp. 1541-1552
    • Rafiq, M.Y.1    Bugmann, G.2    Easterbrook, D.J.3
  • 18
    • 0032670062 scopus 로고    scopus 로고
    • Estimating the cost of steel pipe bending, a comparison between neural networks and regression analysis
    • Shtub A. Versano R. (1999). Estimating the cost of steel pipe bending, a comparison between neural networks and regression analysis. Production Economics,62,201-7
    • (1999) Production Economics , vol.62 , pp. 201-207
    • Shtub, A.1    Versano, R.2
  • 20
  • 21
    • 2642579411 scopus 로고    scopus 로고
    • Predicting accuracy of early cost estimates using factor analysis and multivariate regression
    • Trost M.S., Oberlander G.D. (2003). Predicting accuracy of early cost estimates using factor analysis and multivariate regression. Journal of construction engineering and management, 129, 198-204
    • (2003) Journal of Construction Engineering and Management , vol.129 , pp. 198-204
    • Trost, M.S.1    Oberlander, G.D.2
  • 23


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.