메뉴 건너뛰기




Volumn 24, Issue 2, 2005, Pages 401-418

Fractal polynomial interpolation

Author keywords

Fractal interpolation functions; Iterated function systems; Polynomial interpolation

Indexed keywords


EID: 27144457654     PISSN: 02322064     EISSN: None     Source Type: Journal    
DOI: 10.4171/ZAA/1248     Document Type: Article
Times cited : (207)

References (16)
  • 1
    • 0001213151 scopus 로고
    • Fractal functions and interpolation
    • Barnsley, M. F: Fractal functions and interpolation. Constr. Approx. 2 (1986), 303-329.
    • (1986) Constr. Approx. , vol.2 , pp. 303-329
    • Barnsley, M.F.1
  • 2
    • 0002354550 scopus 로고
    • The calculus of fractal interpolation functions
    • Barnsley, M. F. and A. N. Harrington: The calculus of fractal interpolation functions. J. Approx. Theory 57, (1989), 14-34.
    • (1989) J. Approx. Theory , vol.57 , pp. 14-34
    • Barnsley, M.F.1    Harrington, A.N.2
  • 4
    • 27144485655 scopus 로고
    • On dimensional numbers of some continuous curves
    • (ed.: Edgar, G. A.). Reading, Massachusetts: Addison-Wesley
    • Besicovitch, A. S. and H. D. Ursell: On dimensional numbers of some continuous curves. In: Classics on Fractals, (ed.: Edgar, G. A.). Reading, Massachusetts: Addison-Wesley 1993, pp. 171-179.
    • (1993) Classics on Fractals , pp. 171-179
    • Besicovitch, A.S.1    Ursell, H.D.2
  • 5
    • 0039109413 scopus 로고    scopus 로고
    • The non-differentiability of a class of fractal interpolation functions
    • Chen, S.: The non-differentiability of a class of fractal interpolation functions. Acta Math. Sci. 19 (1999), 425-430.
    • (1999) Acta Math. Sci. , vol.19 , pp. 425-430
    • Chen, S.1
  • 9
    • 84966204183 scopus 로고
    • Weierstrass's non-differentiable function
    • Hardy, G. H.: Weierstrass's non-differentiable function. Trans. Amer. Math. Soc. 17, (1916), 301-325.
    • (1916) Trans. Amer. Math. Soc. , vol.17 , pp. 301-325
    • Hardy, G.H.1
  • 11
    • 0037989694 scopus 로고    scopus 로고
    • Some results of convergence of spline fractal interpolation functions
    • Navascués, M. A. and M. V. Sebastián: Some results of convergence of spline fractal interpolation functions. Fractals 11 (2003)(1), 1-8.
    • (2003) Fractals , vol.11 , Issue.1 , pp. 1-8
    • Navascués, M.A.1    Sebastián, M.V.2
  • 12
    • 20144372609 scopus 로고    scopus 로고
    • Fitting curves by fractal interpolation: An application to the quantification of cognitive brain processes
    • (ed.: M.M. Novak). Singapore: World Sci.
    • Navascués, M. A. and M. V. Sebastian: Fitting curves by fractal interpolation: an application to the quantification of cognitive brain processes. In: Thinking in Patterns: Fractals and Related Phenomena in Nature (ed.: M.M. Novak). Singapore: World Sci. 2004, pp. 143-154.
    • (2004) Thinking in Patterns: Fractals and Related Phenomena in Nature , pp. 143-154
    • Navascués, M.A.1    Sebastian, M.V.2
  • 13
    • 8744266577 scopus 로고    scopus 로고
    • Generalization of Hermite functions by fractal interpolation
    • Navascués, M. A. and M. V. Sebastián: Generalization of Hermite functions by fractal interpolation. J. of Approx. Th. 131 (2004)(1), 19-29.
    • (2004) J. of Approx. Th. , vol.131 , Issue.1 , pp. 19-29
    • Navascués, M.A.1    Sebastián, M.V.2
  • 14
    • 0026123644 scopus 로고
    • Turbulent combustion data analysis using fractals
    • Strahle, W. C.: Turbulent combustion data analysis using fractals. AIAA J. 29 (1991)(3), 409-417.
    • (1991) AIAA J. , vol.29 , Issue.3 , pp. 409-417
    • Strahle, W.C.1
  • 16
    • 0009018411 scopus 로고
    • On continuous functions of a real argument that do not have a well-defined differential quotient
    • (ed.: G. A. Edgar). Reading, Massachusetts: Addison-Wesley
    • Weierstrass, K.: On continuous functions of a real argument that do not have a well-defined differential quotient. In: Classics on Fractals (ed.: G. A. Edgar). Reading, Massachusetts: Addison-Wesley 1993.
    • (1993) Classics on Fractals
    • Weierstrass, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.