-
2
-
-
0020798563
-
A canonical integration technique
-
R. D. Ruth, "A canonical integration technique," IEEE Trans. Nucl. Sci. NS-30, 2669-2671 (1983).
-
(1983)
IEEE Trans. Nucl. Sci.
, vol.NS-30
, pp. 2669-2671
-
-
Ruth, R.D.1
-
3
-
-
0036495991
-
Accurate spin axes and solar system dynamics: Climatic variations for the Earth and Mars
-
S. Edvardsson, K. G. Karlsson, and M. Engholm, "Accurate spin axes and solar system dynamics: Climatic variations for the Earth and Mars," Astron. Astrophys. 384, 689-701 (2002).
-
(2002)
Astron. Astrophys.
, vol.384
, pp. 689-701
-
-
Edvardsson, S.1
Karlsson, K.G.2
Engholm, M.3
-
4
-
-
34249921769
-
Symplectic integrators and their application to dynamical astronomy
-
H. Kinoshita, H. Yoshida, and H. Nakai, "Symplectic integrators and their application to dynamical astronomy," Celest. Mech. 50, 59-71 (1991).
-
(1991)
Celest. Mech.
, vol.50
, pp. 59-71
-
-
Kinoshita, H.1
Yoshida, H.2
Nakai, H.3
-
5
-
-
0036099541
-
Regularizing time transformations in symplectic and composite integration
-
S. Mikkola and P. Wiegert, "Regularizing time transformations in symplectic and composite integration," Celest. Mech. Dyn. Astron. 82, 375-390 (2002).
-
(2002)
Celest. Mech. Dyn. Astron.
, vol.82
, pp. 375-390
-
-
Mikkola, S.1
Wiegert, P.2
-
6
-
-
0000163129
-
Symplectic integrators for solar system dynamics
-
P. Saha and S. Tremaine, "Symplectic integrators for solar system dynamics," Astron. J. 104, 1633-1640 (1992).
-
(1992)
Astron. J.
, vol.104
, pp. 1633-1640
-
-
Saha, P.1
Tremaine, S.2
-
7
-
-
0346444651
-
Symplectic maps for the n-body problem
-
J. Wisdom and M. Holman, "Symplectic maps for the n-body problem," Astron. J. 102, 1528-1538 (1991).
-
(1991)
Astron. J.
, vol.102
, pp. 1528-1538
-
-
Wisdom, J.1
Holman, M.2
-
8
-
-
4244017466
-
Symplectic maps for the n-body problem: Stability analysis
-
J. Wisdom and M. Holman, "Symplectic maps for the n-body problem: Stability analysis," Astron. J. 104, 2022-2029 (1992).
-
(1992)
Astron. J.
, vol.104
, pp. 2022-2029
-
-
Wisdom, J.1
Holman, M.2
-
9
-
-
0030621830
-
A family of symplectic integrators: Stability, accuracy, and molecular dynamics applications
-
Robert D. Skeel, Guihua Zhang, and Tamar Schlick, "A family of symplectic integrators: Stability, accuracy, and molecular dynamics applications," SIAM J. Sci. Comput. (USA) 18, 203-222 (1997).
-
(1997)
SIAM J. Sci. Comput. (USA)
, vol.18
, pp. 203-222
-
-
Skeel, R.D.1
Zhang, G.2
Schlick, T.3
-
10
-
-
0030581058
-
An explicit and symplectic integrator for quantum-classical molecular dynamics
-
Peter Nettesheim, Folkmar A. Bornemann, Burkhard Schmidt, and Christof Schütte, "An explicit and symplectic integrator for quantum-classical molecular dynamics," Chem. Phys. Lett. 256, 581-588 (1996).
-
(1996)
Chem. Phys. Lett.
, vol.256
, pp. 581-588
-
-
Nettesheim, P.1
Bornemann, F.A.2
Schmidt, B.3
Schütte, C.4
-
11
-
-
0041386852
-
Symplectic multiple-time-stepping integrators for quantum-classical molecular dynamics,"
-
edited by P. Deuflhard, J. Hermans, B. Leimkuhler, A. E. Mark, S. Reich, and R. D. Skeel (Springer, New York)
-
Peter Nettesheim and Sebastian Reich, "Symplectic multiple-time-stepping integrators for quantum-classical molecular dynamics," in Computational Molecular Dynamics: Challenges, Methods, Ideas, edited by P. Deuflhard, J. Hermans, B. Leimkuhler, A. E. Mark, S. Reich, and R. D. Skeel (Springer, New York, 1998), pp. 412-420.
-
(1998)
Computational Molecular Dynamics: Challenges, Methods, Ideas
, pp. 412-420
-
-
Nettesheim, P.1
Reich, S.2
-
12
-
-
0001068141
-
Symplectic splitting methods for rigid body molecular dynamics
-
Andreas Dullweber, Benedict Leimkuhlera, and Robert McLachlan, "Symplectic splitting methods for rigid body molecular dynamics," J. Chem. Phys. 107, 5840-5851 (1997).
-
(1997)
J. Chem. Phys.
, vol.107
, pp. 5840-5851
-
-
Dullweber, A.1
Leimkuhlera, B.2
McLachlan, R.3
-
13
-
-
0009086175
-
Lie algebras and canonical integration
-
Department of Physics, University of Maryland, preprint unpublished
-
F. Neri, "Lie algebras and canonical integration," Technical Report, Department of Physics, University of Maryland, preprint (1987), unpublished.
-
(1987)
Technical Report
-
-
Neri, F.1
-
14
-
-
0001005075
-
Construction of higher order symplectic integrators
-
Haruo Yoshida, "Construction of higher order symplectic integrators," Phys. Lett. A 150, 262-268 (1990).
-
(1990)
Phys. Lett. A
, vol.150
, pp. 262-268
-
-
Yoshida, H.1
-
15
-
-
0042383635
-
Stable solutions using the Euler approximation
-
This method has been found more than once. See, for example, "Stable solutions using the Euler approximation." Alan Cromer, Am. J. Phys. 49, 455-459 (1981).
-
(1981)
Alan Cromer, Am. J. Phys.
, vol.49
, pp. 455-459
-
-
-
16
-
-
0003835647
-
-
Springer, New York
-
E. Harier, C. Lubich, and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations (Springer, New York, 2002).
-
(2002)
Geometric Numerical Integration, Structure-preserving Algorithms for Ordinary Differential Equations
-
-
Harier, E.1
Lubich, C.2
Wanner, G.3
-
17
-
-
0007828576
-
Symplectic integrators for Hamiltonian systems: Basic theory
-
Chaos, Resonance, and Collective Dynamical Phenomena in the Solar System
-
Haruo Yoshida, "Symplectic integrators for Hamiltonian systems: Basic theory," in Chaos, Resonance, and Collective Dynamical Phenomena in the Solar System, Proceedings of the 152nd Symposium of the International Astronomical Union (1991), p. 407.
-
(1991)
Proceedings of the 152nd Symposium of the International Astronomical Union
, pp. 407
-
-
Yoshida, H.1
-
18
-
-
0040114714
-
Recent progress in the theory and application of symplectic integrators
-
Haruo Yoshida, "Recent progress in the theory and application of symplectic integrators," Celest. Mech. Dyn. Astron. 56, 27-43 (1993).
-
(1993)
Celest. Mech. Dyn. Astron.
, vol.56
, pp. 27-43
-
-
Yoshida, H.1
-
19
-
-
84971897259
-
Symplectic integrators for Hamiltonian problems: An overview
-
J. M. Sanz-Serna, "Symplectic integrators for Hamiltonian problems: An overview," Acta Numerica 1, 243-286 (1992).
-
(1992)
Acta Numerica
, vol.1
, pp. 243-286
-
-
Sanz-Serna, J.M.1
-
21
-
-
0042124405
-
Structure preserving integration algorithms
-
Nova Science, Commack, New York
-
B. A. Shadwick, Walter F. Buell, and John C. Bowman, "Structure preserving integration algorithms," in Scientific Computing and Applications (Nova Science, Commack, New York, 2001), Vol. 7, pp. 247-255.
-
(2001)
Scientific Computing and Applications
, vol.7
, pp. 247-255
-
-
Shadwick, B.A.1
Buell, W.F.2
Bowman, J.C.3
-
22
-
-
22944467757
-
Computer 'experiments' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules
-
Loup Verlet, "Computer 'experiments' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules," Phys. Rev. 159, 98-103 (1967).
-
(1967)
Phys. Rev.
, vol.159
, pp. 98-103
-
-
Verlet, L.1
-
23
-
-
0003559861
-
-
Addison-Wesley, Reading, MA
-
See, for example, H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods, 2nd ed. (Addison-Wesley, Reading, MA, 1996), p. 123.
-
(1996)
An Introduction to Computer Simulation Methods, 2nd Ed.
, pp. 123
-
-
Gould, H.1
Tobochnik, J.2
-
24
-
-
0003171736
-
A symplectic integration algorithm for separable Hamiltonian functions
-
J. Candy and W. Rozmus, "A symplectic integration algorithm for separable Hamiltonian functions," J. Comput. Phys. 92, 230-256 (1991).
-
(1991)
J. Comput. Phys.
, vol.92
, pp. 230-256
-
-
Candy, J.1
Rozmus, W.2
-
26
-
-
0346653215
-
The accuracy of symplectic integrators
-
R. I. McLachlan, "The accuracy of symplectic integrators," Nonlinearity 5, 541-562 (1992).
-
(1992)
Nonlinearity
, vol.5
, pp. 541-562
-
-
McLachlan, R.I.1
|