-
1
-
-
0040205473
-
On multivariate sign tests
-
Bennett, B.M., (1962). "On multivariate sign tests," J.Roy.Stat.Soc.,Ser. B, 24,159-161.
-
(1962)
J.Roy.Stat.Soc.,Ser. B
, vol.24
, pp. 159-161
-
-
Bennett, B.M.1
-
2
-
-
0039021486
-
A new bivariate sign test
-
Blumen, I. (1958). "A new bivariate sign test," J. Amer. Stat. Assoc., 53, 448-456.
-
(1958)
J. Amer. Stat. Assoc.
, vol.53
, pp. 448-456
-
-
Blumen, I.1
-
3
-
-
0002476010
-
Affine-invariant rank methods in the bivariate location model
-
Brown, B.M. and Hettmansperger, T.P. (1987). "Affine-invariant rank methods in the bivariate location model,". J.R. Statist. Soc. B, 49, 301-310.
-
(1987)
J.R. Statist. Soc. B
, vol.49
, pp. 301-310
-
-
Brown, B.M.1
Hettmansperger, T.P.2
-
4
-
-
0002746259
-
Non-parametric tests for the bivariate two sample location problem
-
Chatterjee, S.K. and Sen, P.K. (1964). "Non-parametric tests for the bivariate two sample location problem," Bull. Calcutta Statist. Ass., 13, 18-58.
-
(1964)
Bull. Calcutta Statist. Ass.
, vol.13
, pp. 18-58
-
-
Chatterjee, S.K.1
Sen, P.K.2
-
7
-
-
0002322469
-
On a test of whether one of two random variables is stochastically larger than the other
-
Mann, H.B. and Whitney, D.R. (1947). "On a test of whether one of two random variables is stochastically larger than the other", Ann. Math. Stat., 18, 50-60.
-
(1947)
Ann. Math. Stat.
, vol.18
, pp. 50-60
-
-
Mann, H.B.1
Whitney, D.R.2
-
8
-
-
0001209811
-
A non parametric test for the bivariate location problem
-
Mardia, K. V. (1967). "A non parametric test for the bivariate location problem," J. Roy. Stat. Soc., Ser. B., 29, 320-342.
-
(1967)
J. Roy. Stat. Soc., Ser. B.
, vol.29
, pp. 320-342
-
-
Mardia, K.V.1
-
10
-
-
0000107573
-
Descriptive statistics for multivariate distributions
-
Oja, H. (1983). "Descriptive statistics for multivariate distributions, " Stat. and Prob. letters, 1, 327-332.
-
(1983)
Stat. and Prob. Letters
, vol.1
, pp. 327-332
-
-
Oja, H.1
-
11
-
-
0001473591
-
A multivariate signed rank test for the one sample location problem
-
Peters, D., and Randles ,R.H. (1990). "A multivariate signed rank test for the one sample location problem,". J. Amer. Stat. Assoc., 85, 552-557.
-
(1990)
J. Amer. Stat. Assoc.
, vol.85
, pp. 552-557
-
-
Peters, D.1
Randles, R.H.2
-
12
-
-
0000418591
-
A bivariate signed rank test for two sample location problem
-
Peters, D., and Randles, R.H. (1991). "A bivariate signed rank test for two sample location problem," J. Roy. Stat. Soc., Ser. B., 53, 493-504.
-
(1991)
J. Roy. Stat. Soc., Ser. B.
, vol.53
, pp. 493-504
-
-
Peters, D.1
Randles, R.H.2
-
13
-
-
53549112637
-
A distribution-free multivariate sign test based on inter-direction
-
Randles, R.H., (1989). "A distribution-free multivariate sign test based on inter-direction," J. Amer. Stat. Assoc., 84, 1045-1050.
-
(1989)
J. Amer. Stat. Assoc.
, vol.84
, pp. 1045-1050
-
-
Randles, R.H.1
-
14
-
-
84948273332
-
Multivariate rank tests for the two sample location problem
-
Randles, R.H., and Peters, D. (1990). "Multivariate rank tests for the two sample location problem," Commun.in Stat., Theory and Methods, 19(11), 4225- 4238.
-
(1990)
Commun.in Stat., Theory and Methods
, vol.19
, Issue.11
, pp. 4225-4238
-
-
Randles, R.H.1
Peters, D.2
-
15
-
-
26944482964
-
Signed rank test for two sample location problem
-
Sen, K. and Mathur, S.K. (1996). "Signed rank test for two sample location problem", J. Stat. Stud., 16, 17-24.
-
(1996)
J. Stat. Stud.
, vol.16
, pp. 17-24
-
-
Sen, K.1
Mathur, S.K.2
-
16
-
-
0031335306
-
A bivariate signed rank test for two sample location problem
-
Sen, K. and Mathur, S.K. (1997a). "A bivariate signed rank test for two sample location problem", Commun. in Stat., Theory and Methods, 26(12), 3031-3050.
-
(1997)
Commun. in Stat., Theory and Methods
, vol.26
, Issue.12
, pp. 3031-3050
-
-
Sen, K.1
Mathur, S.K.2
-
17
-
-
26944462173
-
A two sample signed rank test for location
-
Sen, K and Mathur, S.K. (1997b). "A two sample signed rank test for location" J. Stat. Stud., 17, 1-10.
-
(1997)
J. Stat. Stud.
, vol.17
, pp. 1-10
-
-
Sen, K.1
Mathur, S.K.2
|