메뉴 건너뛰기




Volumn 3533 LNAI, Issue , 2005, Pages 560-562

Novel approach to optimize quantitative association rules by employing multi-objective genetic algorithm

(2)  Kaya, Mehmet a   Alhajj, Reda a  

a NONE

Author keywords

[No Author keywords available]

Indexed keywords

DATABASE SYSTEMS; GENETIC ALGORITHMS; LEARNING SYSTEMS; OPTIMIZATION;

EID: 26944451630     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11504894_78     Document Type: Conference Paper
Times cited : (4)

References (4)
  • 2
    • 33645616225 scopus 로고    scopus 로고
    • Facilitating fuzzy association rules mining by using multi-objective genetic algorithms for automated clustering
    • Melbourne, FL
    • M. Kaya and R. Alhajj, "Facilitating Fuzzy Association Rules Mining by Using Multi-Objective Genetic Algorithms for Automated Clustering," Proc. of IEEE ICDM, Melbourne, FL, 2003.
    • (2003) Proc. of IEEE ICDM
    • Kaya, M.1    Alhajj, R.2
  • 4
    • 0036184255 scopus 로고    scopus 로고
    • Mining optimized association rules with categorical and numeric attributes
    • 12 R. Rastogi and K. Shim, "Mining Optimized Association Rules with Categorical and Numeric Attributes," IEEE TKDE, Vol.14, No.1, pp.29-50, 2002.
    • (2002) IEEE TKDE , vol.14 , Issue.1 , pp. 29-50
    • Rastogi, R.1    Shim, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.