메뉴 건너뛰기




Volumn 3571 LNAI, Issue , 2005, Pages 123-135

A decision-based approach for recommending in hierarchical domains

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION THEORY; DECISION SUPPORT SYSTEMS; GRAPH THEORY; MATHEMATICAL MODELS; USER INTERFACES;

EID: 26944440056     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11518655_12     Document Type: Conference Paper
Times cited : (7)

References (15)
  • 1
    • 0031103679 scopus 로고    scopus 로고
    • Fab: Content-based, collaborative recomendation
    • M. Balabanovic and Y. Shoham. 1997. Fab: Content-based, collaborative recomendation. Communications of the ACM, 40(3):66-72.
    • (1997) Communications of the ACM , vol.40 , Issue.3 , pp. 66-72
    • Balabanovic, M.1    Shoham, Y.2
  • 3
    • 0036454213 scopus 로고    scopus 로고
    • Exploiting contextual independencies in web search and user profiling
    • C.J. Butz. 2002. Exploiting contextual independencies in web search and user profiling. In Proc. of World Congress on Computational Intelligence, pages 1051-1056.
    • (2002) Proc. of World Congress on Computational Intelligence , pp. 1051-1056
    • Butz, C.J.1
  • 6
    • 2442563825 scopus 로고    scopus 로고
    • Clustering terms in the Bayesian network retrieval model: A new approach with two term-layers
    • L.M. de Campos, J.M. Fernández-Luna, and J.F. Huete. 2004. Clustering terms in the Bayesian network retrieval model: a new approach with two term-layers. Applied Soft Computing, 4:149-158
    • (2004) Applied Soft Computing , vol.4 , pp. 149-158
    • De Campos, L.M.1    Fernández-Luna, J.M.2    Huete, J.F.3
  • 8
  • 13
  • 15
    • 0012053189 scopus 로고    scopus 로고
    • A Bayesian approach to user profiling in information retrieval
    • S. Wong and C. Butz. 2000. A Bayesian approach to user profiling in information retrieval. Technology Letters, 4(1):50-56.
    • (2000) Technology Letters , vol.4 , Issue.1 , pp. 50-56
    • Wong, S.1    Butz, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.