-
1
-
-
0001657065
-
Some APX-completeness results for cubic graphs
-
P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theor. Comput. Sci., 237(1-2): 123-134, 2000.
-
(2000)
Theor. Comput. Sci.
, vol.237
, Issue.1-2
, pp. 123-134
-
-
Alimonti, P.1
Kann, V.2
-
2
-
-
0006683426
-
Maximum agreement subtree in a set of evolutionary trees: Metrics and efficient algorithm
-
A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary trees: metrics and efficient algorithm. SIAM J. on Comput. 26(6):1656-1669, 1997.
-
(1997)
SIAM J. on Comput.
, vol.26
, Issue.6
, pp. 1656-1669
-
-
Amir, A.1
Keselman, D.2
-
3
-
-
35048864350
-
Maximum agreement and compatible supertrees
-
15th Annual Symposium on Combinatorial Pattern Matching (CPM'04)
-
V. Berry and F. Nicolas. Maximum agreement and compatible supertrees. In 15th Annual Symposium on Combinatorial Pattern Matching (CPM'04), volume 3109 of LNCS, pages 205-219, 2004.
-
(2004)
LNCS
, vol.3109
, pp. 205-219
-
-
Berry, V.1
Nicolas, F.2
-
4
-
-
26844445194
-
Improved parametrized complexity of maximum agreement subtree and maximum compatible tree problems
-
to appear
-
V. Berry and F. Nicolas. Improved parametrized complexity of maximum agreement subtree and maximum compatible tree problems. IEEE Trans. on Comput. Biology and Bioinf., (to appear).
-
IEEE Trans. on Comput. Biology and Bioinf.
-
-
Berry, V.1
Nicolas, F.2
-
5
-
-
26844564381
-
Approximating the maximum isomorphic agreement subtree is hard
-
P. Bonizzoni, G. Della Vedova, and G. Mauri. Approximating the maximum isomorphic agreement subtree is hard. Int. J. of Found. of Comput. Sci., 11(4):579-590, 2000.
-
(2000)
Int. J. of Found. of Comput. Sci.
, vol.11
, Issue.4
, pp. 579-590
-
-
Bonizzoni, P.1
Vedova, G.D.2
Mauri, G.3
-
7
-
-
0035189546
-
An O(n log n) algorithm for the Maximum Agreement SubTree problem for binary trees
-
R. Cole, M. Farach-Colton, R. Hariharan, T. M. Przytycka, and M. Thorup. An O(n log n) algorithm for the Maximum Agreement SubTree problem for binary trees. SIAM J. on Comput., 30(5): 1385-1404, 2001.
-
(2001)
SIAM J. on Comput.
, vol.30
, Issue.5
, pp. 1385-1404
-
-
Cole, R.1
Farach-Colton, M.2
Hariharan, R.3
Przytycka, T.M.4
Thorup, M.5
-
8
-
-
0019185006
-
When is one estimate of evolutionary relationships a refinement of another?
-
G. F. Eastabrook and F. R. McMorris. When is one estimate of evolutionary relationships a refinement of another? J. of Math. Biol., 10:367-373, 1980.
-
(1980)
J. of Math. Biol.
, vol.10
, pp. 367-373
-
-
Eastabrook, G.F.1
McMorris, F.R.2
-
9
-
-
0037453397
-
Towards optimal lower bounds for clique and chromatic number
-
L. Engebretsen and J. Holmerin. Towards optimal lower bounds for clique and chromatic number. Theor. Comput. Sci., 299(1-3):537-584, 2003.
-
(2003)
Theor. Comput. Sci.
, vol.299
, Issue.1-3
, pp. 537-584
-
-
Engebretsen, L.1
Holmerin, J.2
-
10
-
-
0006643131
-
On the agreement of many trees
-
M. Farach, T. M. Przytycka, and M. Thorup. On the agreement of many trees. Inf. Proces. Letters, 55(6):297-301, 1995.
-
(1995)
Inf. Proces. Letters
, vol.55
, Issue.6
, pp. 297-301
-
-
Farach, M.1
Przytycka, T.M.2
Thorup, M.3
-
11
-
-
84956979382
-
Approximating the complement of the maximum compatible subset of leaves of k trees
-
5th Int. Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX'02)
-
G. Ganapathy and T. J. Warnow. Approximating the complement of the maximum compatible subset of leaves of k trees. In 5th Int. Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX'02), volume 2462 of LNCS, pages 122-134, 2002.
-
(2002)
LNCS
, vol.2462
, pp. 122-134
-
-
Ganapathy, G.1
Warnow, T.J.2
-
12
-
-
84959037630
-
Finding a maximum compatible tree for a bounded number of trees with bounded degree is solvable in polynomial time
-
1st Int. Workshop on Algorithms in Bioinformatics (WABI'01)
-
G. Ganapathysaravanabavan and T. J. Warnow. Finding a maximum compatible tree for a bounded number of trees with bounded degree is solvable in polynomial time. In 1st Int. Workshop on Algorithms in Bioinformatics (WABI'01), volume 2149 of LNCS, pages 156-163, 2001.
-
(2001)
LNCS
, vol.2149
, pp. 156-163
-
-
Ganapathysaravanabavan, G.1
Warnow, T.J.2
-
13
-
-
0041640265
-
Finding largest subtrees and smallest supertrees
-
A. Gupta and N. Nishimura. Finding largest subtrees and smallest supertrees. Algorithmica, 21(2):183-210, 1998.
-
(1998)
Algorithmica
, vol.21
, Issue.2
, pp. 183-210
-
-
Gupta, A.1
Nishimura, N.2
-
14
-
-
0002010884
-
Approximations of weighted independent set and hereditary subset problems
-
M. M. Halldòrsson. Approximations of weighted independent set and hereditary subset problems. J. of Graph Algor. and Appl., 4(1), 2000.
-
(2000)
J. of Graph Algor. and Appl.
, vol.4
, Issue.1
-
-
Halldòrsson, M.M.1
-
15
-
-
0038875361
-
Finding a maximum compatible tree is NP-hard for sequences and trees
-
A. M. Hamel and M. A. Steel. Finding a maximum compatible tree is NP-hard for sequences and trees. Appl. Math. Letters, 9(2):55-59, 1996.
-
(1996)
Appl. Math. Letters
, vol.9
, Issue.2
, pp. 55-59
-
-
Hamel, A.M.1
Steel, M.A.2
-
17
-
-
0002291589
-
On the complexity of comparing evolutionary trees
-
J. Hein, T. Jiang, L. Wang, and K. Zhang. On the complexity of comparing evolutionary trees. Disc. Appl. Math., 71(1-3):153-169, 1996.
-
(1996)
Disc. Appl. Math.
, vol.71
, Issue.1-3
, pp. 153-169
-
-
Hein, J.1
Jiang, T.2
Wang, L.3
Zhang, K.4
-
18
-
-
21144433769
-
Rooted maximum agreement supertrees
-
6th Latin American Symposium on Theoretical Informatics (LATIN'04)
-
J. Jansson, J. H.-K. Ng, K. Sadakane, and W.-K. Sung. Rooted maximum agreement supertrees. In 6th Latin American Symposium on Theoretical Informatics (LATIN'04), volume 2976 of LNCS, pages 499-508, 2004.
-
(2004)
LNCS
, vol.2976
, pp. 499-508
-
-
Jansson, J.1
Ng, J.H.-K.2
Sadakane, K.3
Sung, W.-K.4
-
19
-
-
0029497647
-
On the approximation of shortest common supersequences and longest common subsequences
-
T. Jiang and M. Li. On the approximation of shortest common supersequences and longest common subsequences. SIAM J. on Comput., 24(5): 1122-1139, 1995.
-
(1995)
SIAM J. on Comput.
, vol.24
, Issue.5
, pp. 1122-1139
-
-
Jiang, T.1
Li, M.2
-
20
-
-
84958038951
-
A decomposition theorem for maximum weight bipartite matchings with applications to evolutionary trees
-
7th Annual European Symposium on Algorithms (ESA '99)
-
M.-Y. Kao, T. W. Lam, W.-K. Sung, and H.-F. Ting. A decomposition theorem for maximum weight bipartite matchings with applications to evolutionary trees. In 7th Annual European Symposium on Algorithms (ESA '99), volume 1643 of LNCS, pages 438-449, 1999.
-
(1999)
LNCS
, vol.1643
, pp. 438-449
-
-
Kao, M.-Y.1
Lam, T.W.2
Sung, W.-K.3
Ting, H.-F.4
-
21
-
-
0347752674
-
An even faster and more unifying algorithm for comparing trees via unbalanced bipartite matchings
-
M.-Y. Kao, T. W. Lam, W.-K. Sung, and H.-F. Ting. An even faster and more unifying algorithm for comparing trees via unbalanced bipartite matchings. J. of Algor., 40(2):212-233, 2001.
-
(2001)
J. of Algor.
, vol.40
, Issue.2
, pp. 212-233
-
-
Kao, M.-Y.1
Lam, T.W.2
Sung, W.-K.3
Ting, H.-F.4
-
22
-
-
0027912455
-
Kaikoura tree theorems: Computing the maximum agreement subtree
-
M. A. Steel and T. J. Warnow. Kaikoura tree theorems: Computing the maximum agreement subtree. Inf. Proces. Letters, 48(2):77-82, 1993.
-
(1993)
Inf. Proces. Letters
, vol.48
, Issue.2
, pp. 77-82
-
-
Steel, M.A.1
Warnow, T.J.2
|