-
1
-
-
0032716019
-
Design of nonlinear-phase FIR digital filters: A semidefinite programming approach
-
May
-
W.-S. Lu, “Design of nonlinear-phase FIR digital filters: A semidefinite programming approach,” Proc. ISCAS, vol. III, pp. 263–266, May 1999.
-
(1999)
Proc. ISCAS
, vol.3
, pp. 263-266
-
-
Lu, W.-S.1
-
2
-
-
0030392240
-
FIR Liter design via semidefinite programming and spectral factorization
-
Kobe, Japan Dec.
-
S.-P. Wu, S. Boyd, and L. Vandenberghe, “FIR Liter design via semidefinite programming and spectral factorization,” in Proc. 5th Conf. Decision and Control, Kobe, Japan, Dec. 1996, pp. 271–276.
-
(1996)
Proc. 5th Conf. Decision and Control
, pp. 271-276
-
-
Wu, S.-P.1
Boyd, S.2
Vandenberghe, L.3
-
3
-
-
4344628791
-
On the design of real and complex FIR filters with flatness and peak error constraints using semidefinite programming
-
May
-
S. C. Chan and K. M. Tsui, “On the design of real and complex FIR filters with flatness and peak error constraints using semidefinite programming,” in Proc. ISCAS, vol. 3, May 2004, pp. 125–128.
-
(2004)
Proc. ISCAS
, vol.3
, pp. 125-128
-
-
Chan, S.C.1
Tsui, K.M.2
-
4
-
-
0033292257
-
Design of nonlinear phase FIR filters with second-order cone programming
-
Aug.
-
J. O. Coleman and D. P. Scholnik, “Design of nonlinear phase FIR filters with second-order cone programming,” in Proc. MWSCAS, vol. 1, Aug. 1999, pp. 409–412.
-
(1999)
Proc. MWSCAS
, vol.1
, pp. 409-412
-
-
Coleman, J.O.1
Scholnik, D.P.2
-
6
-
-
0038758855
-
Optimal design of FIR frequency-response-masking filters using second-order cone programming
-
May
-
W. S. Lu and T. Hinamoto, “Optimal design of FIR frequency-response-masking filters using second-order cone programming,” in Proc. ISCAS, vol. 3, May 2003, pp. 878–881.
-
(2003)
Proc. ISCAS
, vol.3
, pp. 878-881
-
-
Lu, W.S.1
Hinamoto, T.2
-
8
-
-
0031997389
-
FIR filter designs with linear constraints using the eigenfilter approach
-
Feb.
-
S. C. Pei, C. C. Tseng, and W. S. Yang, “FIR filter designs with linear constraints using the eigenfilter approach,” IEEE Trans. Circuits Syst. II, Analog. Digit. Signal Process., vol. 45, no. 2, pp. 232-237, Feb. 1998.
-
(1998)
IEEE Trans. Circuits Syst. II, Analog. Digit. Signal Process.
, vol.45
, Issue.2
, pp. 232-237
-
-
Pei, S.C.1
Tseng, C.C.2
Yang, W.S.3
-
9
-
-
0026407552
-
Design of IFIR eigenfilters
-
Jun.
-
T. Chen and P. P. Vaidyanathan, “Design of IFIR eigenfilters,” in Proc. ISCAS, vol. 1, Jun. 1991, pp. 264–267.
-
(1991)
Proc. ISCAS
, vol.1
, pp. 264-267
-
-
Chen, T.1
Vaidyanathan, P.P.2
-
10
-
-
0032624316
-
A method for design of Mth-band filters
-
Jun.
-
Y. Wisutmethangoon and T. Q. Nguyen, “A method for design of Mth-band filters,” IEEE Trans. Signal Process., vol. 47, no. 6, pp. 1669–1678, Jun. 1999.
-
(1999)
IEEE Trans. Signal Process.
, vol.47
, Issue.6
, pp. 1669-1678
-
-
Wisutmethangoon, Y.1
Nguyen, T.Q.2
-
11
-
-
0026137044
-
FIR digital filters with least-squares stopbands subject to pain-gain constraints
-
Nov.
-
J. W. Adams, “FIR digital filters with least-squares stopbands subject to pain-gain constraints,” IEEE Trans. Circuits Syst., vol. 39, no. 4, pp. 376–388, Nov. 1991.
-
(1991)
IEEE Trans. Circuits Syst.
, vol.39
, Issue.4
, pp. 376-388
-
-
Adams, J.W.1
-
12
-
-
85008007737
-
Design of FIR Digital Filters with Prescribed Flatness and Peak Error Constraints Using Convex Programming
-
S. C. Chan, K. M. Tsui, and K. S. Yeung, “Design of FIR Digital Filters with Prescribed Flatness and Peak Error Constraints Using Convex Programming,” The University of Hong Kong, Internal Report, 2003.
-
(2003)
The University of Hong Kong, Internal Report
-
-
Chan, S.C.1
Tsui, K.M.2
Yeung, K.S.3
-
13
-
-
0036490798
-
Maximally flat low-pass digital differentiators
-
Mar.
-
I. W. Selesnick, “Maximally flat low-pass digital differentiators,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 49, no. 3, pp. 219–223, Mar. 2002.
-
(2002)
IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.
, vol.49
, Issue.3
, pp. 219-223
-
-
Selesnick, I.W.1
-
14
-
-
0028766253
-
Design of FIR first order digital differentiators of variable fractional sample delay using maximally flat error criterion
-
Jan. 6
-
E. Hermanowicz and M. Rojewski, “Design of FIR first order digital differentiators of variable fractional sample delay using maximally flat error criterion,” Electron. Lett., vol. 30, no. 1, pp. 17–18, Jan. 6, 1994.
-
(1994)
Electron. Lett.
, vol.30
, Issue.1
, pp. 17-18
-
-
Hermanowicz, E.1
Rojewski, M.2
-
15
-
-
0033296299
-
Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
-
J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optim. Meth. Softw., vol. 11–12, pp. 625–653, 1999.
-
(1999)
Optim. Meth. Softw.
, vol.11-12
, pp. 625-653
-
-
Sturm, J.F.1
-
16
-
-
0037230224
-
Lowpass delay filters with flat magnitude and group delay constraints
-
Jan.
-
R. Gopinath, “Lowpass delay filters with flat magnitude and group delay constraints,” IEEE Trans. Signal Process., vol. 51, no. 1, pp. 182–192, Jan. 2003.
-
(2003)
IEEE Trans. Signal Process.
, vol.51
, Issue.1
, pp. 182-192
-
-
Gopinath, R.1
|