메뉴 건너뛰기




Volumn 3561, Issue PART I, 2005, Pages 469-480

Spatial reasoning based on rules

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER SCIENCE; MATHEMATICAL MODELS; PROBLEM SOLVING;

EID: 26444477649     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/11499220_48     Document Type: Conference Paper
Times cited : (2)

References (15)
  • 1
    • 0036567648 scopus 로고    scopus 로고
    • Combining topological and size constraints for spatial reasoning
    • A. Gerevini and J. Renz. Combining Topological and Size Constraints for Spatial Reasoning. Artificial Intelligence (AIJ), vol. 137(1-2): 1-42, 2002
    • (2002) Artificial Intelligence (AIJ) , vol.137 , Issue.1-2 , pp. 1-42
    • Gerevini, A.1    Renz, J.2
  • 2
    • 26444506896 scopus 로고    scopus 로고
    • Combining cardinal direction relations and relative orientation relations in Qualitative Spatial Reasoning
    • Fachbereich Informatik
    • A Isli, V Haarslev and R Moller. Combining cardinal direction relations and relative orientation relations in Qualitative Spatial Reasoning. Fachbereich Informatik, University Hamburg, Technical report FBI-HH-M-304/01, 2001
    • (2001) University Hamburg, Technical Report , vol.FBI-HH-M-304-01
    • Isli, A.1    Haarslev, V.2    Moller, R.3
  • 4
    • 0020849266 scopus 로고
    • Maintaining knowledge about temporal intervals
    • November
    • James F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, vol. 26(11): 832-843, November, 1983
    • (1983) Communications of the ACM , vol.26 , Issue.11 , pp. 832-843
    • Allen, J.F.1
  • 6
    • 85027691494 scopus 로고
    • A formal definition of binary topological relations
    • Paris, France: Lecture Notes in Computer Science, Springer-Verlag
    • M. Egenhofer. A Formal Definition of Binary Topological Relations. In Third International Conference on Foundations of Data Organization and Algorithms (FODO), Vol. 367, pp. 457-472, Paris, France: Lecture Notes in Computer Science, Springer-Verlag, 1989
    • (1989) Third International Conference on Foundations of Data Organization and Algorithms (FODO) , vol.367 , pp. 457-472
    • Egenhofer, M.1
  • 7
    • 0001930291 scopus 로고
    • A spatial logic based on regions and connection
    • Nebel B, Rich C, Swartout W, (eds.) San Mateo: Morgan Kaufmann
    • Randell D, Cui Z and Cohn A. A spatial logic based on regions and connection. In: Nebel B, Rich C, Swartout W, (eds.) Proc. of the Knowledge Representation and Reasoning, pp. 165-176, San Mateo: Morgan Kaufmann, 1992
    • (1992) Proc. of the Knowledge Representation and Reasoning , pp. 165-176
    • Randell, D.1    Cui, Z.2    Cohn, A.3
  • 9
    • 0346093839 scopus 로고    scopus 로고
    • Composing cardinal direction relations
    • S. Skiadopoulos and M. Koubarakis. Composing cardinal direction relations. Artificial Intelligence, vol. 152(2): 143-171, 2004
    • (2004) Artificial Intelligence , vol.152 , Issue.2 , pp. 143-171
    • Skiadopoulos, S.1    Koubarakis, M.2
  • 10
    • 85011043422 scopus 로고
    • Computing transitivity tables: A challenge for automated theorem provers
    • Berlin: Springer Verlag
    • D. A. Randell, A. G. Cohn and Z. Cui. Computing Transitivity Tables: A Challenge For Automated Theorem Provers. In 11th International Conference on Automated Deduction, pp.786-790, Berlin: Springer Verlag, 1992
    • (1992) 11th International Conference on Automated Deduction , pp. 786-790
    • Randell, D.A.1    Cohn, A.G.2    Cui, Z.3
  • 11
    • 3042718659 scopus 로고    scopus 로고
    • Cardinal directions between spatial objects: The pairwise-consistency problem
    • Serafino Cicerone and Paolino Di Felice. Cardinal directions between spatial objects: the pairwise-consistency problem. Information Sciences, vol. 164: 165-188, 2004
    • (2004) Information Sciences , vol.164 , pp. 165-188
    • Cicerone, S.1    Felice, P.D.2
  • 13
    • 0033620274 scopus 로고    scopus 로고
    • On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the region connection calculus
    • J. Renz and B. Nebel. On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus. Artificial Intelligence (AIJ), vol. 108(1-2): 69-123, 1999
    • (1999) Artificial Intelligence (AIJ) , vol.108 , Issue.1-2 , pp. 69-123
    • Renz, J.1    Nebel, B.2
  • 14
    • 84880675230 scopus 로고    scopus 로고
    • Maximal tractable fragments of the region connection calculus: A complete analysis
    • Stockholm, Sweden, August
    • J. Renz. Maximal Tractable Fragments of the Region Connection Calculus: A Complete Analysis. In: 16th International Joint Conference on Artificial Intelligence (IJCAI'99), pp. 448-455, Stockholm, Sweden, August, 1999
    • (1999) 16th International Joint Conference on Artificial Intelligence (IJCAI'99) , pp. 448-455
    • Renz, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.