메뉴 건너뛰기




Volumn 3500, Issue , 2005, Pages 31-47

The factor graph network model for biological systems

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; FEEDBACK; MATHEMATICAL MODELS; OSMOSIS; PROBABILITY; STATISTICAL METHODS; GENES; GRAPH THEORY; PROBABILISTIC LOGICS;

EID: 26444437862     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/11415770_3     Document Type: Conference Paper
Times cited : (11)

References (28)
  • 2
    • 1942453302 scopus 로고    scopus 로고
    • Predicting gene expression from sequence
    • M.A. Beer and S. Tavazoie. Predicting gene expression from sequence. Cell, 117:185-198, 2004.
    • (2004) Cell , vol.117 , pp. 185-198
    • Beer, M.A.1    Tavazoie, S.2
  • 3
    • 0033985570 scopus 로고    scopus 로고
    • Kinetic analysis of a molecular model of the budding yeast cell cycle
    • K.C. Chen et al. Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell, 11:369-91, 2000.
    • (2000) Mol Biol Cell , vol.11 , pp. 369-391
    • Chen, K.C.1
  • 4
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • G. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42:393-405, 1990.
    • (1990) Artificial Intelligence , vol.42 , pp. 393-405
    • Cooper, G.1
  • 5
    • 2342648924 scopus 로고    scopus 로고
    • Integrating high-throughput and computational data elucidates bacterial networks
    • M.W. Covert, E.M. Knight, J.L. Reed, M.J. Herrgard, and B.O. Palsson. Integrating high-throughput and computational data elucidates bacterial networks. Nature, 429:92-96, 2004.
    • (2004) Nature , vol.429 , pp. 92-96
    • Covert, M.W.1    Knight, E.M.2    Reed, J.L.3    Herrgard, M.J.4    Palsson, B.O.5
  • 6
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • N. Friedman, M. Linial, I. Nachman, and D. Pe'er. Using Bayesian networks to analyze expression data. J. Comp. Biol., 7:601-620, 2000.
    • (2000) J. Comp. Biol. , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 10
    • 0036282743 scopus 로고    scopus 로고
    • Osmotic stress signaling and osmoadaptation in yeasts
    • S Hohmann. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev., 66(2):300-72, 2002.
    • (2002) Microbiol Mol Biol Rev. , vol.66 , Issue.2 , pp. 300-372
    • Hohmann, S.1
  • 11
    • 3242875300 scopus 로고    scopus 로고
    • Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
    • S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, and S. Miyano. Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. J. Bioinform. Comput. Biol., 2:77-98, 2004.
    • (2004) J. Bioinform. Comput. Biol. , vol.2 , pp. 77-98
    • Imoto, S.1    Higuchi, T.2    Goto, T.3    Tashiro, K.4    Kuhara, S.5    Miyano, S.6
  • 12
    • 3042698613 scopus 로고    scopus 로고
    • Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network
    • S. Imoto, S. Kim, T. Goto, S. Aburatani, K. Tashiro, S. Kuhara, and S. Miyano. Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. J. Bioinform. Comput. Biol., 1:231-252, 2004.
    • (2004) J. Bioinform. Comput. Biol. , vol.1 , pp. 231-252
    • Imoto, S.1    Kim, S.2    Goto, T.3    Aburatani, S.4    Tashiro, K.5    Kuhara, S.6    Miyano, S.7
  • 13
    • 4043084564 scopus 로고    scopus 로고
    • Tutorial on variational approximation methods
    • D. Saad and M. Opper, editors, MIT Press
    • T.S. Jaakkola. Tutorial on variational approximation methods. In D. Saad and M. Opper, editors, Advanced Mean Field Methods - Theory and Practice, pages 129-160. MIT Press, 2001.
    • (2001) Advanced Mean Field Methods - Theory and Practice , pp. 129-160
    • Jaakkola, T.S.1
  • 15
    • 0001341735 scopus 로고    scopus 로고
    • Introduction to Monte Carlo methods
    • M. I. Jordan, editor, Kluwer Academic Press
    • D. J. C. MacKay. Introduction to Monte Carlo methods. In M. I. Jordan, editor, Learning in Graphical Models, pages 175-204. Kluwer Academic Press, 1998.
    • (1998) Learning in Graphical Models , pp. 175-204
    • MacKay, D.J.C.1
  • 16
    • 14844307159 scopus 로고    scopus 로고
    • Inferring quantitative models of regulatory networks from expression data
    • I. Nachman, A. Regev, and N. Friedman. Inferring quantitative models of regulatory networks from expression data. Bioinformatics, 20:248-256, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 248-256
    • Nachman, I.1    Regev, A.2    Friedman, N.3
  • 17
    • 0742288061 scopus 로고    scopus 로고
    • Unique and redundant roles for hog mapk pathway components as revealed by whole-genome expression analysis
    • S.M. O'Rourke and I. Herskowitz. Unique and redundant roles for hog mapk pathway components as revealed by whole-genome expression analysis. Mol Biol Cell., 15(2):532-42, 2004.
    • (2004) Mol Biol Cell. , vol.15 , Issue.2 , pp. 532-542
    • O'Rourke, S.M.1    Herskowitz, I.2
  • 19
    • 0032933350 scopus 로고    scopus 로고
    • Repressors and upstream repressing sequences of the stress-regulated ena1 gene in saccharomyces cerevisiae: Bzip protein sko1p confers hog-dependent osmotic regulation
    • M. Proft and R. Serrano. Repressors and upstream repressing sequences of the stress-regulated ena1 gene in saccharomyces cerevisiae: bzip protein sko1p confers hog-dependent osmotic regulation. Mol Biol Cell., 19:537-46, 1999.
    • (1999) Mol Biol Cell. , vol.19 , pp. 537-546
    • Proft, M.1    Serrano, R.2
  • 20
    • 0034708436 scopus 로고    scopus 로고
    • The transcriptional response of saccharomyces cerevisiae to osmotic shock, hot1p and msn2p/msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes
    • M. Rep, M. Krantz, J.M. Thevelein, and S. Hohmann. The transcriptional response of saccharomyces cerevisiae to osmotic shock, hot1p and msn2p/msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol Chem, 275:8290-8300, 2000.
    • (2000) J. Biol Chem , vol.275 , pp. 8290-8300
    • Rep, M.1    Krantz, M.2    Thevelein, J.M.3    Hohmann, S.4
  • 21
    • 0032814143 scopus 로고    scopus 로고
    • Osmotic stress-induced gene expression in saccharomyces cerevisiae requires msn1p and the novel nuclear factor hot1p
    • M. Rep, V. Reiser, U. Holzmller, J.M. Thevelein, S. Hohmann, G. Ammerer, and H. Ruis. Osmotic stress-induced gene expression in saccharomyces cerevisiae requires msn1p and the novel nuclear factor hot1p. Mol. Cell. Biol, 19:5474-5485, 1999.
    • (1999) Mol. Cell. Biol , vol.19 , pp. 5474-5485
    • Rep, M.1    Reiser, V.2    Holzmller, U.3    Thevelein, J.M.4    Hohmann, S.5    Ammerer, G.6    Ruis, H.7
  • 22
    • 0036678794 scopus 로고    scopus 로고
    • Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics
    • M. Ronen, R. Rosenberg, B. Shraiman, and U. Alon. Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics. Proceedings of the National Academy of Science USA, 99:10555-10560, 2002.
    • (2002) Proceedings of the National Academy of Science USA , vol.99 , pp. 10555-10560
    • Ronen, M.1    Rosenberg, R.2    Shraiman, B.3    Alon, U.4
  • 23
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • E. Segal, M. Shapira, A. Regev, D. Pe'er, D. Botstein, D. Koller, and N. Friedman. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet., 34(2): 166-76, 2003.
    • (2003) Nat Genet. , vol.34 , Issue.2 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 24
    • 0000042837 scopus 로고    scopus 로고
    • Evaluating functional network inference using simulations of complex biological systems
    • V.A. Smith, E.D. Jarvis, and A.J. Hartemink. Evaluating functional network inference using simulations of complex biological systems. Bioinformatics, 18:216-224, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 216-224
    • Smith, V.A.1    Jarvis, E.D.2    Hartemink, A.J.3
  • 25
    • 0037509648 scopus 로고    scopus 로고
    • Computational expansion of genetic networks
    • A. Tanay and R. Shamir. Computational expansion of genetic networks. Bioinformatics, 17:8270-8278, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 8270-8278
    • Tanay, A.1    Shamir, R.2
  • 26
    • 3142550629 scopus 로고    scopus 로고
    • Modeling transcription programs: Inferring binding site activity and dose-response model optimization
    • A. Tanay and R. Shamir. Modeling transcription programs: inferring binding site activity and dose-response model optimization. J. Comp. Biol., 11:357-375, 2004.
    • (2004) J. Comp. Biol. , vol.11 , pp. 357-375
    • Tanay, A.1    Shamir, R.2
  • 28
    • 0142016107 scopus 로고    scopus 로고
    • Constructing free energy approximations and generalized belief propagation algorithms
    • Mitsubishi electric resaerch laboratories
    • S. Yedidia, WT. Freeman, and Y. Weiss. Constructing free energy approximations and generalized belief propagation algorithms. Technical Report TR-2004-040, Mitsubishi electric resaerch laboratories, 2004.
    • (2004) Technical Report , vol.TR-2004-040
    • Yedidia, S.1    Freeman, W.T.2    Weiss, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.