-
1
-
-
10744226222
-
Computational discovery of gene modules and regulatory networks
-
Z. Bar-Joseph, G.K. Gerber, T.I. Lee, N.J. Rinaldi, J.Y. Yoo, F. Robert, D.B. Gordon, E. Fraenkel, T.S. Jaakkola, R.A. Young, and D.K. Gifford. Computational discovery of gene modules and regulatory networks. Nature Biotechnology, 21:1337-1342, 2003.
-
(2003)
Nature Biotechnology
, vol.21
, pp. 1337-1342
-
-
Bar-Joseph, Z.1
Gerber, G.K.2
Lee, T.I.3
Rinaldi, N.J.4
Yoo, J.Y.5
Robert, F.6
Gordon, D.B.7
Fraenkel, E.8
Jaakkola, T.S.9
Young, R.A.10
Gifford, D.K.11
-
2
-
-
1942453302
-
Predicting gene expression from sequence
-
M.A. Beer and S. Tavazoie. Predicting gene expression from sequence. Cell, 117:185-198, 2004.
-
(2004)
Cell
, vol.117
, pp. 185-198
-
-
Beer, M.A.1
Tavazoie, S.2
-
3
-
-
0033985570
-
Kinetic analysis of a molecular model of the budding yeast cell cycle
-
K.C. Chen et al. Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell, 11:369-91, 2000.
-
(2000)
Mol Biol Cell
, vol.11
, pp. 369-391
-
-
Chen, K.C.1
-
4
-
-
0025401005
-
The computational complexity of probabilistic inference using Bayesian belief networks
-
G. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42:393-405, 1990.
-
(1990)
Artificial Intelligence
, vol.42
, pp. 393-405
-
-
Cooper, G.1
-
5
-
-
2342648924
-
Integrating high-throughput and computational data elucidates bacterial networks
-
M.W. Covert, E.M. Knight, J.L. Reed, M.J. Herrgard, and B.O. Palsson. Integrating high-throughput and computational data elucidates bacterial networks. Nature, 429:92-96, 2004.
-
(2004)
Nature
, vol.429
, pp. 92-96
-
-
Covert, M.W.1
Knight, E.M.2
Reed, J.L.3
Herrgard, M.J.4
Palsson, B.O.5
-
6
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
N. Friedman, M. Linial, I. Nachman, and D. Pe'er. Using Bayesian networks to analyze expression data. J. Comp. Biol., 7:601-620, 2000.
-
(2000)
J. Comp. Biol.
, vol.7
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
9
-
-
0036366689
-
Combining location and expression data for principled discovery of genetic regulatory networks
-
A. Hartemink, D. Gifford, T. Jaakkola, and R. Young. Combining location and expression data for principled discovery of genetic regulatory networks. In Proceedings of the 2002 Pacific Symposioum in Biocomputing (PSB 02), pages 437-449, 2002.
-
(2002)
Proceedings of the 2002 Pacific Symposioum in Biocomputing (PSB 02)
, pp. 437-449
-
-
Hartemink, A.1
Gifford, D.2
Jaakkola, T.3
Young, R.4
-
10
-
-
0036282743
-
Osmotic stress signaling and osmoadaptation in yeasts
-
S Hohmann. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev., 66(2):300-72, 2002.
-
(2002)
Microbiol Mol Biol Rev.
, vol.66
, Issue.2
, pp. 300-372
-
-
Hohmann, S.1
-
11
-
-
3242875300
-
Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
-
S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, and S. Miyano. Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. J. Bioinform. Comput. Biol., 2:77-98, 2004.
-
(2004)
J. Bioinform. Comput. Biol.
, vol.2
, pp. 77-98
-
-
Imoto, S.1
Higuchi, T.2
Goto, T.3
Tashiro, K.4
Kuhara, S.5
Miyano, S.6
-
12
-
-
3042698613
-
Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network
-
S. Imoto, S. Kim, T. Goto, S. Aburatani, K. Tashiro, S. Kuhara, and S. Miyano. Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. J. Bioinform. Comput. Biol., 1:231-252, 2004.
-
(2004)
J. Bioinform. Comput. Biol.
, vol.1
, pp. 231-252
-
-
Imoto, S.1
Kim, S.2
Goto, T.3
Aburatani, S.4
Tashiro, K.5
Kuhara, S.6
Miyano, S.7
-
13
-
-
4043084564
-
Tutorial on variational approximation methods
-
D. Saad and M. Opper, editors, MIT Press
-
T.S. Jaakkola. Tutorial on variational approximation methods. In D. Saad and M. Opper, editors, Advanced Mean Field Methods - Theory and Practice, pages 129-160. MIT Press, 2001.
-
(2001)
Advanced Mean Field Methods - Theory and Practice
, pp. 129-160
-
-
Jaakkola, T.S.1
-
15
-
-
0001341735
-
Introduction to Monte Carlo methods
-
M. I. Jordan, editor, Kluwer Academic Press
-
D. J. C. MacKay. Introduction to Monte Carlo methods. In M. I. Jordan, editor, Learning in Graphical Models, pages 175-204. Kluwer Academic Press, 1998.
-
(1998)
Learning in Graphical Models
, pp. 175-204
-
-
MacKay, D.J.C.1
-
16
-
-
14844307159
-
Inferring quantitative models of regulatory networks from expression data
-
I. Nachman, A. Regev, and N. Friedman. Inferring quantitative models of regulatory networks from expression data. Bioinformatics, 20:248-256, 2004.
-
(2004)
Bioinformatics
, vol.20
, pp. 248-256
-
-
Nachman, I.1
Regev, A.2
Friedman, N.3
-
17
-
-
0742288061
-
Unique and redundant roles for hog mapk pathway components as revealed by whole-genome expression analysis
-
S.M. O'Rourke and I. Herskowitz. Unique and redundant roles for hog mapk pathway components as revealed by whole-genome expression analysis. Mol Biol Cell., 15(2):532-42, 2004.
-
(2004)
Mol Biol Cell.
, vol.15
, Issue.2
, pp. 532-542
-
-
O'Rourke, S.M.1
Herskowitz, I.2
-
19
-
-
0032933350
-
Repressors and upstream repressing sequences of the stress-regulated ena1 gene in saccharomyces cerevisiae: Bzip protein sko1p confers hog-dependent osmotic regulation
-
M. Proft and R. Serrano. Repressors and upstream repressing sequences of the stress-regulated ena1 gene in saccharomyces cerevisiae: bzip protein sko1p confers hog-dependent osmotic regulation. Mol Biol Cell., 19:537-46, 1999.
-
(1999)
Mol Biol Cell.
, vol.19
, pp. 537-546
-
-
Proft, M.1
Serrano, R.2
-
20
-
-
0034708436
-
The transcriptional response of saccharomyces cerevisiae to osmotic shock, hot1p and msn2p/msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes
-
M. Rep, M. Krantz, J.M. Thevelein, and S. Hohmann. The transcriptional response of saccharomyces cerevisiae to osmotic shock, hot1p and msn2p/msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol Chem, 275:8290-8300, 2000.
-
(2000)
J. Biol Chem
, vol.275
, pp. 8290-8300
-
-
Rep, M.1
Krantz, M.2
Thevelein, J.M.3
Hohmann, S.4
-
21
-
-
0032814143
-
Osmotic stress-induced gene expression in saccharomyces cerevisiae requires msn1p and the novel nuclear factor hot1p
-
M. Rep, V. Reiser, U. Holzmller, J.M. Thevelein, S. Hohmann, G. Ammerer, and H. Ruis. Osmotic stress-induced gene expression in saccharomyces cerevisiae requires msn1p and the novel nuclear factor hot1p. Mol. Cell. Biol, 19:5474-5485, 1999.
-
(1999)
Mol. Cell. Biol
, vol.19
, pp. 5474-5485
-
-
Rep, M.1
Reiser, V.2
Holzmller, U.3
Thevelein, J.M.4
Hohmann, S.5
Ammerer, G.6
Ruis, H.7
-
22
-
-
0036678794
-
Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics
-
M. Ronen, R. Rosenberg, B. Shraiman, and U. Alon. Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics. Proceedings of the National Academy of Science USA, 99:10555-10560, 2002.
-
(2002)
Proceedings of the National Academy of Science USA
, vol.99
, pp. 10555-10560
-
-
Ronen, M.1
Rosenberg, R.2
Shraiman, B.3
Alon, U.4
-
23
-
-
0037941585
-
Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
-
E. Segal, M. Shapira, A. Regev, D. Pe'er, D. Botstein, D. Koller, and N. Friedman. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet., 34(2): 166-76, 2003.
-
(2003)
Nat Genet.
, vol.34
, Issue.2
, pp. 166-176
-
-
Segal, E.1
Shapira, M.2
Regev, A.3
Pe'er, D.4
Botstein, D.5
Koller, D.6
Friedman, N.7
-
24
-
-
0000042837
-
Evaluating functional network inference using simulations of complex biological systems
-
V.A. Smith, E.D. Jarvis, and A.J. Hartemink. Evaluating functional network inference using simulations of complex biological systems. Bioinformatics, 18:216-224, 2002.
-
(2002)
Bioinformatics
, vol.18
, pp. 216-224
-
-
Smith, V.A.1
Jarvis, E.D.2
Hartemink, A.J.3
-
25
-
-
0037509648
-
Computational expansion of genetic networks
-
A. Tanay and R. Shamir. Computational expansion of genetic networks. Bioinformatics, 17:8270-8278, 2001.
-
(2001)
Bioinformatics
, vol.17
, pp. 8270-8278
-
-
Tanay, A.1
Shamir, R.2
-
26
-
-
3142550629
-
Modeling transcription programs: Inferring binding site activity and dose-response model optimization
-
A. Tanay and R. Shamir. Modeling transcription programs: inferring binding site activity and dose-response model optimization. J. Comp. Biol., 11:357-375, 2004.
-
(2004)
J. Comp. Biol.
, vol.11
, pp. 357-375
-
-
Tanay, A.1
Shamir, R.2
-
27
-
-
3142550630
-
Physical network models
-
C.H. Yeang, T. Ideker, and T. Jaakkola. Physical network models. J Comput Biol., 11(2-3):243-62, 2004.
-
(2004)
J Comput Biol.
, vol.11
, Issue.2-3
, pp. 243-262
-
-
Yeang, C.H.1
Ideker, T.2
Jaakkola, T.3
-
28
-
-
0142016107
-
Constructing free energy approximations and generalized belief propagation algorithms
-
Mitsubishi electric resaerch laboratories
-
S. Yedidia, WT. Freeman, and Y. Weiss. Constructing free energy approximations and generalized belief propagation algorithms. Technical Report TR-2004-040, Mitsubishi electric resaerch laboratories, 2004.
-
(2004)
Technical Report
, vol.TR-2004-040
-
-
Yedidia, S.1
Freeman, W.T.2
Weiss, Y.3
|