-
1
-
-
0003364423
-
Ginzburg-Landau Vortices
-
Birkhäuser Boston, Massachusetts
-
F. Bethuel, H. Brezis, and F. Hélein, Ginzburg-Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications, vol. 13, Birkhäuser Boston, Massachusetts, 1994.
-
(1994)
Progress in Nonlinear Differential Equations and Their Applications
, vol.13
-
-
Bethuel, F.1
Brezis, H.2
Hélein, F.3
-
3
-
-
84974200439
-
Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation
-
X. Chen, C. M. Elliott, and T. Qi, Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 6, 1075-1088.
-
(1994)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.124
, Issue.6
, pp. 1075-1088
-
-
Chen, X.1
Elliott, C.M.2
Qi, T.3
-
4
-
-
0002163970
-
Symmetric solutions of the Ginzburg-Landau equation in all dimensions
-
S. Gustafson, Symmetric solutions of the Ginzburg-Landau equation in all dimensions, Int. Math. Res. Not. 1997 (1997), no. 16, 807-816.
-
(1997)
Int. Math. Res. Not.
, vol.1997
, Issue.16
, pp. 807-816
-
-
Gustafson, S.1
-
5
-
-
0041471561
-
Dynamic stability of magnetic vortices
-
_, Dynamic stability of magnetic vortices, Nonlinearity 15 (2002), no. 5, 1717-1728.
-
(2002)
Nonlinearity
, vol.15
, Issue.5
, pp. 1717-1728
-
-
-
6
-
-
0034349020
-
The stability of magnetic vortices
-
S. Gustafson and I. M. Sigal, The stability of magnetic vortices, Comm. Math. Phys. 212 (2000), no. 2, 257-275.
-
(2000)
Comm. Math. Phys.
, vol.212
, Issue.2
, pp. 257-275
-
-
Gustafson, S.1
Sigal, I.M.2
-
7
-
-
0001756686
-
Symmetry of the Ginzburg-Landau minimizer in a disc
-
E. H. Lieb and M. Loss, Symmetry of the Ginzburg-Landau minimizer in a disc, Math. Res. Lett. 1 (1994), no. 6, 701-715.
-
(1994)
Math. Res. Lett.
, vol.1
, Issue.6
, pp. 701-715
-
-
Lieb, E.H.1
Loss, M.2
-
8
-
-
0001759725
-
On the stability of radial solutions of the Ginzburg-Landau equation
-
P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct. Anal. 130 (1995), no. 2, 334-344.
-
(1995)
J. Funct. Anal.
, vol.130
, Issue.2
, pp. 334-344
-
-
Mironescu, P.1
-
9
-
-
0001240515
-
Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale
-
French
-
_, Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale [Local minimizers for the Ginzburg-Landau equation are radially symmetric], C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 6, 593-598 (French).
-
(1996)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.323
, Issue.6
, pp. 593-598
-
-
-
10
-
-
0002389471
-
Ginzburg-Landau equation. I. Static vortices
-
Partial Differential Equations and Their Applications (Toronto, ON, 1995), American Mathematical Society, Rhode Island
-
Y. N. Ovchinnikov and I. M. Sigal, Ginzburg-Landau equation. I. Static vortices, Partial Differential Equations and Their Applications (Toronto, ON, 1995), CRM Proc. Lecture Notes, vol. 12, American Mathematical Society, Rhode Island, 1997, pp. 199-220.
-
(1997)
CRM Proc. Lecture Notes
, vol.12
, pp. 199-220
-
-
Ovchinnikov, Y.N.1
Sigal, I.M.2
-
11
-
-
0040955540
-
Linear and Nonlinear Aspects of Vortices. The Ginzburg-Landau Model
-
Birkhäuser Boston, Massachusetts
-
F. Pacard and T. Rivière, Linear and Nonlinear Aspects of Vortices. The Ginzburg-Landau Model, Progress in Nonlinear Differential Equations and Their Applications, vol. 39, Birkhäuser Boston, Massachusetts, 2000.
-
(2000)
Progress in Nonlinear Differential Equations and Their Applications
, vol.39
-
-
Pacard, F.1
Rivière, T.2
|