-
3
-
-
36149016819
-
-
L. Hedin, Phys. Rev. 139, A796 (1965).
-
(1965)
Phys. Rev.
, vol.139
, pp. A796
-
-
Hedin, L.1
-
9
-
-
0000101589
-
-
G. Onida, L. Reining, R.W. Godby, R. Del Sole, and W. Andreoni, Phys. Rev. Lett. 75, 818 (1995);
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 818
-
-
Onida, G.1
Reining, L.2
Godby, R.W.3
Del Sole, R.4
Andreoni, W.5
-
11
-
-
0032070791
-
-
S. Albrecht, L. Reining, R. Del Sole, and G. Onida, Phys. Rev. Lett. 80, 4510 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 4510
-
-
Albrecht, S.1
Reining, L.2
Del Sole, R.3
Onida, G.4
-
16
-
-
0036057017
-
-
references therein
-
G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002), and references therein.
-
(2002)
Rev. Mod. Phys.
, vol.74
, pp. 601
-
-
Onida, G.1
Reining, L.2
Rubio, A.3
-
19
-
-
0001701450
-
-
R.M. Martin, J.A. van Vechten, J.E. Rowe, and D.E. Aspnes, Phys. Rev. B 6, 2500 (1972).
-
(1972)
Phys. Rev. B
, vol.6
, pp. 2500
-
-
Martin, R.M.1
van Vechten, J.A.2
Rowe, J.E.3
Aspnes, D.E.4
-
21
-
-
0000747769
-
-
references therein
-
I. Egri, Phys. Rep. 119, 363 (1985), and references therein.
-
(1985)
Phys. Rep.
, vol.119
, pp. 363
-
-
Egri, I.1
-
26
-
-
0037060307
-
-
L. Reining, V. Olevano, A. Rubio, and G. Onida, Phys. Rev. Lett. 88, 066404 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 066404
-
-
Reining, L.1
Olevano, V.2
Rubio, A.3
Onida, G.4
-
27
-
-
0042321498
-
-
xc can lead to a violation of sum rules, as predicted by, The approach is in fact only meant for getting a good description of a given spectrum in a given frequency range
-
xc can lead to a violation of sum rules, as predicted by A. Liebsch, Phys. Rev. B 32, 6255 (1985). The approach is in fact only meant for getting a good description of a given spectrum in a given frequency range.
-
(1985)
Phys. Rev. B
, vol.32
, pp. 6255
-
-
Liebsch, A.1
-
28
-
-
0037438549
-
-
R. Del Sole, G. Adragna, V. Olevano, and L. Reining, Phys. Rev. B 67, 045207 (2003).
-
(2003)
Phys. Rev. B
, vol.67
, pp. 045207
-
-
Del Sole, R.1
Adragna, G.2
Olevano, V.3
Reining, L.4
-
29
-
-
85038984865
-
-
(unpublished)
-
S. Botti, F. Sottile, N. Vast, V. Olevano, L. Reining, H.-C. Weissker, A. Rubio, G. Onida, R. Del Sole, and R.W. Godby (unpublished).
-
-
-
Botti, S.1
Sottile, F.2
Vast, N.3
Olevano, V.4
Reining, L.5
Weissker, H.-C.6
Rubio, A.7
Onida, G.8
Del Sole, R.9
Godby, R.W.10
-
33
-
-
17944397701
-
-
See, for instance
-
See, for instance, I. Vasiliev, S. Öğüt, and J.R. Chelikowsky, Phys. Rev. Lett. 82, 1919 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 1919
-
-
Vasiliev, I.1
Öğüt, S.2
Chelikowsky, J.R.3
-
35
-
-
2842591283
-
-
J.T. Devreese and F. BrosensPlenum, New York
-
W. Hanke, H.J. Mattausch, and G. Strinati, in Electron Correlations in Solids, Molecules, and Atoms, edited by J.T. Devreese and F. Brosens (Plenum, New York, 1983), p. 289.
-
(1983)
Electron Correlations in Solids, Molecules, and Atoms
, pp. 289
-
-
Hanke, W.1
Mattausch, H.J.2
Strinati, G.3
-
36
-
-
85039007792
-
-
G = 411 for silicon and argon, respectively. On the contrary, the long-range model in TDDFT turned out to require only 59 G vectors, as an RPA calculation. The self-energy shift for silicon (GW-RPA calculation) has been obtained using the GW corrections, calculated in the plasmon pole model approximation (see Ref. 29); whereas for solid argon, a “scissor operator” (of 6.0 eV) has been applied to simulate the GW corrections, and hence to reproduce the experimental quasiparticle gap. The broadening used for silicon in Figs. 11 and 33 was 0.05 eV (absolute Lorentzian broadening). In addition a relative broadening (Gaussian + Lorentzian) of 2% has been applied. The broadening used for argon in Figs. 22 and 44 was 0.05 eV (absolute Lorentzian broadening)
-
G = 411 for silicon and argon, respectively. On the contrary, the long-range model in TDDFT turned out to require only 59 G vectors, as an RPA calculation. The self-energy shift for silicon (GW-RPA calculation) has been obtained using the GW corrections, calculated in the plasmon pole model approximation (see Ref. 29); whereas for solid argon, a “scissor operator” (of 6.0 eV) has been applied to simulate the GW corrections, and hence to reproduce the experimental quasiparticle gap. The broadening used for silicon in Figs. 11 and 33 was 0.05 eV (absolute Lorentzian broadening). In addition a relative broadening (Gaussian + Lorentzian) of 2% has been applied. The broadening used for argon in Figs. 22 and 44 was 0.05 eV (absolute Lorentzian broadening).
-
-
-
-
37
-
-
85038988505
-
-
For indications concerning the code see
-
For indications concerning the code see http://theory.polytechnique.fr/codes/codes.html
-
-
-
-
38
-
-
3743124036
-
-
V. Saile, M. Skibowski, W. Steinmann, P. Gürtler, E.E. Koch, and A. Kozevnikov, Phys. Rev. Lett. 37, 305 (1976);
-
(1976)
Phys. Rev. Lett.
, vol.37
, pp. 305
-
-
Saile, V.1
Skibowski, M.2
Steinmann, W.3
Gürtler, P.4
Koch, E.E.5
Kozevnikov, A.6
-
39
-
-
85039007748
-
-
Ph.D. thesis, Universität München
-
V. Saile, Ph.D. thesis, Universität München, 1976.
-
(1976)
-
-
Saile, V.1
-
40
-
-
85038992802
-
-
See also E.L. Shirley, Fig. 6 of Ref. 11
-
See also E.L. Shirley, Fig. 6 of Ref. 11.
-
-
-
-
42
-
-
85039018284
-
-
This has also been verified for argon, where BSE well reproduces peak positions and relative intensities [V. Olevano (private communication)]
-
This has also been verified for argon, where BSE well reproduces peak positions and relative intensities [V. Olevano (private communication)].
-
-
-
-
45
-
-
85039026233
-
-
v are in principle Kohn-Sham eigenvalues; in this work we assume however, as it was done in Refs. 20,22,23, that also in the present “TDDFT-like” framework the same quasiparticle band structure as in the BSE is used. The wave functions instead are throughout taken to be LDA Kohn-Sham orbitals
-
v are in principle Kohn-Sham eigenvalues; in this work we assume however, as it was done in Refs. 20,22,23, that also in the present “TDDFT-like” framework the same quasiparticle band structure as in the BSE is used. The wave functions instead are throughout taken to be LDA Kohn-Sham orbitals.
-
-
-
-
46
-
-
0012459223
-
-
For (Formula presented) instead of (Formula presented), see
-
For (Formula presented) instead of (Formula presented), see M. Petersilka, U.J. Gossmann, and E.K.U. Gross, Phys. Rev. Lett. 76, 1212 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 1212
-
-
Petersilka, M.1
Gossmann, U.J.2
Gross, E.K.U.3
-
51
-
-
85039026361
-
-
2 where G = 0 alone already yields results close to the converged ones
-
2 where G = 0 alone already yields results close to the converged ones.
-
-
-
-
55
-
-
85038999620
-
-
(private communication)
-
R. Del Sole (private communication).
-
-
-
Del Sole, R.1
-
57
-
-
85038986107
-
-
0 is replaced by a Gaussian (Formula presented)
-
0 is replaced by a Gaussian (Formula presented).
-
-
-
-
59
-
-
85038972556
-
-
The structure, for all systems, is fcc with two atoms in the basis
-
The structure, for all systems, is fcc with two atoms in the basis.
-
-
-
-
60
-
-
0142166825
-
-
P. Lautenschlager, M. Garriga, L. Viña, and M. Cardona, Phys. Rev. B 36, 4821 (1987).
-
(1987)
Phys. Rev. B
, vol.36
, pp. 4821
-
-
Lautenschlager, P.1
Garriga, M.2
Viña, L.3
Cardona, M.4
|