-
1
-
-
0030558389
-
Applications of the Mathieu equation
-
L. Ruby, "Applications of the Mathieu equation," Am. J. Phys. 64, 39-44 (1996).
-
(1996)
Am. J. Phys.
, vol.64
, pp. 39-44
-
-
Ruby, L.1
-
2
-
-
23044533693
-
An analog experiment of the parametric instability
-
R. Berthet, A. Petrosyan, and B. Roman, "An analog experiment of the parametric instability," Am. J. Phys. 70, 744-749 (2002).
-
(2002)
Am. J. Phys.
, vol.70
, pp. 744-749
-
-
Berthet, R.1
Petrosyan, A.2
Roman, B.3
-
4
-
-
33646654981
-
Torsional parametric oscillations in wires
-
N. B. Tufillaro, "Torsional parametric oscillations in wires," Eur. J. Phys. 11, 122-124 (1990).
-
(1990)
Eur. J. Phys.
, vol.11
, pp. 122-124
-
-
Tufillaro, N.B.1
-
5
-
-
0003951930
-
-
Dover, New York, 2nd ed., Article 68b
-
J. W. Strutt (Baron Rayleigh), The Theory of Sound (Dover, New York, 1945), 2nd ed., Vol. 1, Article 68b.
-
(1945)
The Theory of Sound
, vol.1
-
-
Strutt, J.W.1
-
6
-
-
33646654772
-
Some remarkable cases of resonance
-
C. V. Raman, "Some remarkable cases of resonance," Phys. Rev. 35, 449-458 (1912).
-
(1912)
Phys. Rev.
, vol.35
, pp. 449-458
-
-
Raman, C.V.1
-
7
-
-
33646635450
-
-
note
-
Semi-stable means that the steady-state solution is stable to changes in the driving frequency in one direction (that is, increasing or decreasing), but unstable to changes in the other (see Sec. II and Fig. 2 for further details).
-
-
-
-
8
-
-
0031325575
-
Note on the stability of the nonlinear Mathieu equation
-
H. Kidachi and H. Onogi, "Note on the stability of the nonlinear Mathieu equation," Prog. Theor. Phys. 98, 755-773 (1997).
-
(1997)
Prog. Theor. Phys.
, vol.98
, pp. 755-773
-
-
Kidachi, H.1
Onogi, H.2
-
9
-
-
0040586777
-
On Melde's string
-
T. Matsuda, "On Melde's String," Prog. Theor. Phys. 100, 1287-1292 (1998).
-
(1998)
Prog. Theor. Phys.
, vol.100
, pp. 1287-1292
-
-
Matsuda, T.1
-
10
-
-
33646669892
-
-
note
-
-1 times those that are measured in the laboratory, and so is potentially confusing.
-
-
-
-
12
-
-
33646649474
-
-
edited by M. Abramowitz and I. A. Stegun (National Bureau of Standards, Washington, DC), Chap. 20
-
G. Blanch, in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, edited by M. Abramowitz and I. A. Stegun (National Bureau of Standards, Washington, DC, 1965), Chap. 20.
-
(1965)
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
-
-
Blanch, G.1
-
14
-
-
0037342356
-
Mathieu functions, a visual approach
-
J. C. Gutíerrez-Vega, R. M. Rodríguez-Dagnino, M. A. Meneses-Nava, and S. Chávez-Cerda, "Mathieu functions, a visual approach," Am. J. Phys. 71, 233-242 (2003).
-
(2003)
Am. J. Phys.
, vol.71
, pp. 233-242
-
-
Gutíerrez-Vega, J.C.1
Rodríguez-Dagnino, R.M.2
Meneses-Nava, M.A.3
Chávez-Cerda, S.4
-
15
-
-
33646662342
-
-
note
-
Equation (16) shows that if u(0) = 0 and u̇(0) = 0, then u(T)≡0. This condition reveals one of the features of parametric excitation, namely that a parametrically excited mode will only grow if it is "seeded" by random fluctuations in the properties of the system. This seeding is done mathematically by assuming that u(0) is a small but nonzero value (see Pigs. 3-5).
-
-
-
-
16
-
-
0026820660
-
Non-linear three-dimensional large-amplitude damped free vibration of a stiff elastic stretched string
-
A. Watzky, "Non-linear three-dimensional large-amplitude damped free vibration of a stiff elastic stretched string," J. Sound Vib. 153, 125-142 (1992).
-
(1992)
J. Sound Vib.
, vol.153
, pp. 125-142
-
-
Watzky, A.1
-
19
-
-
0003131232
-
Intrinsic nonlinear effects in vibrating strings
-
J. A. Elliott, "Intrinsic nonlinear effects in vibrating strings," Am. J. Phys. 48, 478-480 (1980); A. Alippi and A. Bettucci, "Nonlinear strings as bistable elements in acoustic wave propagation," Phys. Rev. Lett. 63, 1230-1232 (1989).
-
(1980)
Am. J. Phys.
, vol.48
, pp. 478-480
-
-
Elliott, J.A.1
-
20
-
-
4243469229
-
Nonlinear strings as bistable elements in acoustic wave propagation
-
J. A. Elliott, "Intrinsic nonlinear effects in vibrating strings," Am. J. Phys. 48, 478-480 (1980); A. Alippi and A. Bettucci, "Nonlinear strings as bistable elements in acoustic wave propagation," Phys. Rev. Lett. 63, 1230-1232 (1989).
-
(1989)
Phys. Rev. Lett.
, vol.63
, pp. 1230-1232
-
-
Alippi, A.1
Bettucci, A.2
-
21
-
-
0033419337
-
The missing wave momentum mystery
-
D. R. Rowland and C. Pask, "The missing wave momentum mystery," Am. J. Phys. 67, 378-388 (1999).
-
(1999)
Am. J. Phys.
, vol.67
, pp. 378-388
-
-
Rowland, D.R.1
Pask, C.2
-
22
-
-
0027990735
-
Measurement of nonlinear effects in a driven vibrating wire
-
R. J. Hanson, J. M. Anderson, and H. K. Macomber, "Measurement of nonlinear effects in a driven vibrating wire," J. Acoust. Soc. Am. 96, 1549-1556 (1994).
-
(1994)
J. Acoust. Soc. Am.
, vol.96
, pp. 1549-1556
-
-
Hanson, R.J.1
Anderson, J.M.2
Macomber, H.K.3
-
23
-
-
0021458380
-
Nonlinear generation of missing modes on a vibrating string
-
K. A. Legge and N. H. Fletcher, "Nonlinear generation of missing modes on a vibrating string," J. Acoust. Soc. Am. 76, 5-12 (1984).
-
(1984)
J. Acoust. Soc. Am.
, vol.76
, pp. 5-12
-
-
Legge, K.A.1
Fletcher, N.H.2
-
24
-
-
33646653199
-
-
note
-
That this simplification is not unreasonable follows from the fact that although transverse motion on a string generally becomes tubular rather than planar, the stability analysis in Ref. 9 reveals that the stability result in Eq. (12a) for planar motion also holds when the motion is allowed to be nonplanar. Furthermore, although the theoretical analysis in Ref. 6 has some limitations, reasonable agreement between experimental results and theory based on the assumption of planar motion was reported.
-
-
-
-
25
-
-
33646669335
-
-
note
-
x, still is.
-
-
-
-
26
-
-
0028442556
-
Large amplitude vibrations of strings
-
A. W. Leissa and A. M. Saad, "Large amplitude vibrations of strings," Trans. ASME 61, 296-301 (1994).
-
(1994)
Trans. ASME
, vol.61
, pp. 296-301
-
-
Leissa, A.W.1
Saad, A.M.2
-
27
-
-
33646670605
-
-
note
-
These solutions are referred to as pseudo-unstable because like unstable solutions, perturbations from the equilibrium solution U(T)=0 initially grow exponentially. However, unlike unstable solutions and more like stable solutions, they do not do so without bound and, like stable solutions, periodically return to the perturbation value. (As shown in Ref. 8, the pseudo-unstable solutions travel on closed rather than open curves in the phase plane, although these curves do not remain in the vicinity of the equilibrium solution.)
-
-
-
-
28
-
-
33646670077
-
-
Master Thesis, Osaka Kyoiko University
-
H. Kono, Master Thesis, Osaka Kyoiko University, 1994.
-
(1994)
-
-
Kono, H.1
-
29
-
-
33646644827
-
-
note
-
0∼0.017-0. 05kg-wt.
-
-
-
-
31
-
-
0000163933
-
Nonlinear resonance in vibrating strings
-
J. A. Elliott, "Nonlinear resonance in vibrating strings," Am. J. Phys. 50, 1148-1150 (1982).
-
(1982)
Am. J. Phys.
, vol.50
, pp. 1148-1150
-
-
Elliott, J.A.1
-
32
-
-
33646667249
-
-
Reference 29, Chap. 12
-
Reference 29, Chap. 12.
-
-
-
|