메뉴 건너뛰기




Volumn 374, Issue 1-2, 2004, Pages 122-128

ANN model for prediction of the effects of composition and process parameters on tensile strength and percent elongation of Si - Mn TRIP steels

Author keywords

Artificial neural network; Back propagation algorithm; Intercritical annealing; Modeling; Si Mn TRIP steel; Supervised learning

Indexed keywords

ALGORITHMS; ANNEALING; BACKPROPAGATION; MATHEMATICAL MODELS; MICROSTRUCTURE; NEURAL NETWORKS; SILICON COMPOUNDS; TENSILE STRENGTH; TOPOLOGY;

EID: 2642519638     PISSN: 09215093     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.msea.2004.01.007     Document Type: Article
Times cited : (61)

References (30)
  • 15
    • 0039714960 scopus 로고
    • Standard Methods of Tension Testing of Metallic Materials, E 8 ASTM, Philadelphia
    • Standard Methods of Tension Testing of Metallic Materials, E8, Annual Book of ASTM Standards, vol. 03.01, 1984, ASTM, Philadelphia, p. 130.
    • (1984) Annual Book of ASTM Standards , vol.3 , Issue.1 , pp. 130
  • 17
    • 85161772833 scopus 로고
    • PhD Thesis, McGill University, Montreal, Canada
    • A. Zarei-Hanzaki, PhD Thesis, McGill University, Montreal, Canada, 1994.
    • (1994)
    • Zarei-Hanzaki, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.