메뉴 건너뛰기




Volumn 3195, Issue , 2004, Pages 610-617

Estimating the number of sources for frequency-domain blind source separation

Author keywords

[No Author keywords available]

Indexed keywords

ARCHITECTURAL ACOUSTICS; FREQUENCY DOMAIN ANALYSIS; INDEPENDENT COMPONENT ANALYSIS; MIXTURES; REVERBERATION;

EID: 26044453113     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-30110-3_78     Document Type: Article
Times cited : (9)

References (14)
  • 3
    • 33744506598 scopus 로고    scopus 로고
    • Blind source separation based on space-time-frequency diversity
    • Rickard, S., Balan, R., Rosca, J.: Blind source separation based on space-time-frequency diversity. In: Proc. ICA2003. (2003) 493-498
    • (2003) Proc. ICA2003 , pp. 493-498
    • Rickard, S.1    Balan, R.2    Rosca, J.3
  • 4
    • 0141512720 scopus 로고    scopus 로고
    • Minimal distortion principle for blind source separation
    • Matsuoka, K., Nakashima, S.: Minimal distortion principle for blind source separation. In: Proc. ICA 2001. (2001) 722-727
    • (2001) Proc. ICA 2001 , pp. 722-727
    • Matsuoka, K.1    Nakashima, S.2
  • 5
    • 0037211149 scopus 로고    scopus 로고
    • Convolutive blind separation of speech mixtures using the natural gradient
    • Douglas, S.C., Sun, X.: Convolutive blind separation of speech mixtures using the natural gradient. Speech Communication 39 (2003) 65-78
    • (2003) Speech Communication , vol.39 , pp. 65-78
    • Douglas, S.C.1    Sun, X.2
  • 6
    • 0032212942 scopus 로고    scopus 로고
    • Blind separation of convolved mixtures in the frequency domain
    • Smaragdis, P.: Blind separation of convolved mixtures in the frequency domain. Neurocomputing 22 (1998) 21-34
    • (1998) Neurocomputing , vol.22 , pp. 21-34
    • Smaragdis, P.1
  • 7
    • 0035659640 scopus 로고    scopus 로고
    • An approach to blind source separation based on temporal structure of speech signals
    • Murata, N., Ikeda, S., Ziehe, A.: An approach to blind source separation based on temporal structure of speech signals. Neurocomputing 41 (2001) 1-24
    • (2001) Neurocomputing , vol.41 , pp. 1-24
    • Murata, N.1    Ikeda, S.2    Ziehe, A.3
  • 8
    • 4344579404 scopus 로고    scopus 로고
    • A robust and precise method for solving the permutation problem of frequency-domain blind source separation
    • Sawada, H., Mukai, R., Araki, S., Makino, S.: A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Trans. Speech and Audio Processing 12 (2004)
    • (2004) IEEE Trans. Speech and Audio Processing , vol.12
    • Sawada, H.1    Mukai, R.2    Araki, S.3    Makino, S.4
  • 10
    • 4344670887 scopus 로고    scopus 로고
    • Convolutive blind source separation for more than two sources in the frequency domain
    • Sawada, H., Mukai, R., Araki, S., Makino, S.: Convolutive blind source separation for more than two sources in the frequency domain. In: Proc. ICASSP 2004. (2004)
    • (2004) Proc. ICASSP 2004
    • Sawada, H.1    Mukai, R.2    Araki, S.3    Makino, S.4
  • 12
    • 0141631697 scopus 로고    scopus 로고
    • Estimation of the number of sound sources using support vector machines and its application to sound source separation
    • Yamamoto, K., Asano, F., van Rooijen, W., Ling, E., Yamada, T., Kitawaki, N.: Estimation of the number of sound sources using support vector machines and its application to sound source separation. In: Proc. ICASSP 2003. (2003) 485-488
    • (2003) Proc. ICASSP 2003 , pp. 485-488
    • Yamamoto, K.1    Asano, F.2    Van Rooijen, W.3    Ling, E.4    Yamada, T.5    Kitawaki, N.6
  • 13
    • 5444240713 scopus 로고    scopus 로고
    • Geometrical interpretation of the PCA subspace method for overdetermined blind source separation
    • Winter, S., Sawada, H., Makino, S.: Geometrical interpretation of the PCA subspace method for overdetermined blind source separation. In: Proc. ICA2003. (2003) 775-780
    • (2003) Proc. ICA2003 , pp. 775-780
    • Winter, S.1    Sawada, H.2    Makino, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.