메뉴 건너뛰기




Volumn 168, Issue 2, 2005, Pages 1169-1174

A study of convergence on the Newton-homotopy continuation method

Author keywords

Homotopy continuation method; Newton method; Numerical method

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; FUNCTIONS; ITERATIVE METHODS; NONLINEAR EQUATIONS; NUMERICAL METHODS; PROBLEM SOLVING;

EID: 26044450586     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2003.10.068     Document Type: Article
Times cited : (66)

References (9)
  • 6
    • 0033702384 scopus 로고    scopus 로고
    • A coupling method of a homotopy technique and a perturbation technique for non-linear problems
    • J.H. He A coupling method of a homotopy technique and a perturbation technique for non-linear problems International Journal of Non-linear Mechanics 35 2000 37 43
    • (2000) International Journal of Non-linear Mechanics , vol.35 , pp. 37-43
    • He, J.H.1
  • 7
    • 0037440579 scopus 로고    scopus 로고
    • Homotopy perturbation methods: A new nonlinear analytical technique
    • J.H. He Homotopy perturbation methods: a new nonlinear analytical technique Applied Mathematics and Computation 135 2003 73 79
    • (2003) Applied Mathematics and Computation , vol.135 , pp. 73-79
    • He, J.H.1
  • 8
    • 0037440583 scopus 로고    scopus 로고
    • A new iteration method for solving algebraic equations
    • J.H. He A new iteration method for solving algebraic equations Applied Mathematics and Computation 135 2003 81 84
    • (2003) Applied Mathematics and Computation , vol.135 , pp. 81-84
    • He, J.H.1
  • 9
    • 0042522428 scopus 로고    scopus 로고
    • Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method
    • S. Abbasbandy Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method Applied Mathematics and Computation 145 2003 887 893
    • (2003) Applied Mathematics and Computation , vol.145 , pp. 887-893
    • Abbasbandy, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.