메뉴 건너뛰기




Volumn 51, Issue 10, 1995, Pages 5360-5386

Gravitational waves from inspiralling compact binaries: Energy loss and waveform to second-post-Newtonian order

Author keywords

[No Author keywords available]

Indexed keywords


EID: 25744444304     PISSN: 05562821     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevD.51.5360     Document Type: Article
Times cited : (242)

References (48)
  • 14
    • 84927477079 scopus 로고    scopus 로고
    • In the case considered here of quasicircular orbits it is sufficient to consider the energy loss. This case brings also the simplification of annulling any possible periodic difference, in the form of a total time derivative, between the local 2PN mechanical energy loss and the radiated energy flux at infinity.
  • 21
    • 84927488571 scopus 로고    scopus 로고
    • Our notation is the following: signature -+++; Greek indices =0,1,2,3; Latin indices =1,2,3; covariant metric =gμν; g=det (gμν); r=|x|=(x1sup 2 +x2sup 2 +x3sup 2)1/2; ni =ni =xi/r; partiali = partial/ partial xi; xL =xL= xi1 xi2 cdots xil and partialL = partiali1 partiali2 cdots partialil, where L=i1 i2 cdots il is a multi index with l indices; xL-1 = xi1 xi2 cdots xil-1, etc.; the symmetric and trace free (STF) part of a tensor TL is equally denoted by hat TL = T< L > = STFL (TL), e.g., hat xij = xi xj -1/3 δij r2; T(ij) = 1/2 (Tij+Tji).
  • 30
    • 84927473305 scopus 로고    scopus 로고
    • For simplicity, we are discussing here the case of extended bodies where U(x) and Wij(x) are everywhere regular. Even in the point mass limit it is enough that W(x) be regular in the generic case where the origin x=0 differs from the positions of the point masses yA.
  • 34
    • 84927507472 scopus 로고    scopus 로고
    • L. Schwartz, Théorie des distributions (Hermann, Paris, 1978).
  • 37
    • 84927482003 scopus 로고    scopus 로고
    • C.M. Will, in Proceedings of the 8th Nishinomiya Yukawa Symposium on Relativistic Cosmology [3].
  • 45
    • 84927469218 scopus 로고    scopus 로고
    • Note that, in the limit ν =0, the parameter x reduces to the Schwarzschild coordinate version of the parameter γ: γSch=Gm/(rSchc2) where rSch=r+Gm/c2. citeTSasa94 denotes the parameter x=(Gmω /c3)2/3 by v2.
  • 48
    • 84927478255 scopus 로고    scopus 로고
    • The result ( refeq:4.24) agrees with Eq. (44) in Ref. citeSW93. Note that the latter reference uses ADM coordinates instead of harmonic coordinates. In particular the ADM coordinate radius of the circular orbit is related to the harmonic coordinate one by rADM = r [1-1/8 (2+29ν) γ2].


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.