-
1
-
-
0011490655
-
-
(1992)
Science
, vol.256
, pp. 325
-
-
Abramovici, A.1
Althouse, W.E.2
Drever, R.W.P.3
Gürsel, Y.4
Kawamura, S.5
Raab, F.J.6
Shoemaker, D.7
Siewers, L.8
Spero, R.E.9
Thorne, K.S.10
Vogt, R.E.11
Weiss, R.12
Whitcomb, S.E.13
Zucker, M.E.14
-
2
-
-
84927505598
-
-
edited by, R. Mann, P. Wesson, World Scientific, Singapore
-
(1991)
Gravitation 1990, Proceedings of the Banff Summer Institute, Banff, Alberta
-
-
Bradaschia, C.1
Calloni, E.2
Cobal, M.3
Del Fasbro, R.4
Di Virgilio, A.5
Giazotto, A.6
Holloway, L.E.7
Kautzky, H.8
Michelozzi, B.9
Montelatici, V.10
Pascuello, D.11
Velloso, W.12
-
4
-
-
0001706230
-
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 2984
-
-
Cutler, C.1
Apostolatos, T.A.2
Bildsten, L.3
Finn, L.S.4
Flanagan, E.E.5
Kennefick, D.6
Markovic, D.M.7
Ori, A.8
Poisson, E.9
Sussman, G.J.10
Thorne, K.S.11
-
14
-
-
84927477079
-
-
In the case considered here of quasicircular orbits it is sufficient to consider the energy loss. This case brings also the simplification of annulling any possible periodic difference, in the form of a total time derivative, between the local 2PN mechanical energy loss and the radiated energy flux at infinity.
-
-
-
-
21
-
-
84927488571
-
-
Our notation is the following: signature -+++; Greek indices =0,1,2,3; Latin indices =1,2,3; covariant metric =gμν; g=det (gμν); r=|x|=(x1sup 2 +x2sup 2 +x3sup 2)1/2; ni =ni =xi/r; partiali = partial/ partial xi; xL =xL= xi1 xi2 cdots xil and partialL = partiali1 partiali2 cdots partialil, where L=i1 i2 cdots il is a multi index with l indices; xL-1 = xi1 xi2 cdots xil-1, etc.; the symmetric and trace free (STF) part of a tensor TL is equally denoted by hat TL = T< L > = STFL (TL), e.g., hat xij = xi xj -1/3 δij r2; T(ij) = 1/2 (Tij+Tji).
-
-
-
-
30
-
-
84927473305
-
-
For simplicity, we are discussing here the case of extended bodies where U(x) and Wij(x) are everywhere regular. Even in the point mass limit it is enough that W(x) be regular in the generic case where the origin x=0 differs from the positions of the point masses yA.
-
-
-
-
34
-
-
84927507472
-
-
L. Schwartz, Théorie des distributions (Hermann, Paris, 1978).
-
-
-
-
37
-
-
84927482003
-
-
C.M. Will, in Proceedings of the 8th Nishinomiya Yukawa Symposium on Relativistic Cosmology [3].
-
-
-
-
45
-
-
84927469218
-
-
Note that, in the limit ν =0, the parameter x reduces to the Schwarzschild coordinate version of the parameter γ: γSch=Gm/(rSchc2) where rSch=r+Gm/c2. citeTSasa94 denotes the parameter x=(Gmω /c3)2/3 by v2.
-
-
-
-
48
-
-
84927478255
-
-
The result ( refeq:4.24) agrees with Eq. (44) in Ref. citeSW93. Note that the latter reference uses ADM coordinates instead of harmonic coordinates. In particular the ADM coordinate radius of the circular orbit is related to the harmonic coordinate one by rADM = r [1-1/8 (2+29ν) γ2].
-
-
-
|