-
2
-
-
36749114393
-
On finding transition states
-
C.J. Cerjan and W.H. Miller, “On finding transition states,” J. Chem. Phys., vol. 75, pp. 2600-6305, 1981.
-
(1981)
J. Chem. Phys.
, vol.75
, pp. 2600-6305
-
-
Cerjan, C.J.1
Miller, W.H.2
-
3
-
-
0024934493
-
Stability regions of nonlinear dynamical systems: a constructive methodology
-
Dec.
-
H.D. Chiang and J.S. Thorp, “Stability regions of nonlinear dynamical systems: a constructive methodology,” IEEE Trans. Automat. Contr., vol. 34, pp. 1229-1241, Dec. 1989.
-
(1989)
IEEE Trans. Automat. Contr.
, vol.34
, pp. 1229-1241
-
-
Chiang, H.D.1
Thorp, J.S.2
-
4
-
-
0030216061
-
Quasistability regions of nonlinear dynamical systems: optimal estimation
-
Aug.
-
H.D. Chiang and L. Fekih-Ahmed, “Quasistability regions of nonlinear dynamical systems: optimal estimation,” IEEE Trans. Circuits Syst., vol. 43, pp. 636-643, Aug. 1996.
-
(1996)
IEEE Trans. Circuits Syst.
, vol.43
, pp. 636-643
-
-
Chiang, H.D.1
Fekih-Ahmed, L.2
-
6
-
-
0025496625
-
An extended continuous Mewton method
-
I. Diener, “An extended continuous Mewton method,” J. Optimization Theory Applicat., vol. 67, pp. 57-77, 1990.
-
(1990)
J. Optimization Theory Applicat.
, vol.67
, pp. 57-77
-
-
Diener, I.1
-
7
-
-
0022105529
-
On the estimation of asymptotic stability region: state of the art and new proposal
-
Aug.
-
R. Genesio, M. Tartaglia, and A. Vicino, “On the estimation of asymptotic stability region: state of the art and new proposal,” IEEE Trans. Automatic Contr., vol. 30, pp. 747-755, Aug. 1985.
-
(1985)
IEEE Trans. Automatic Contr.
, vol.30
, pp. 747-755
-
-
Genesio, R.1
Tartaglia, M.2
Vicino, A.3
-
11
-
-
0004236178
-
Trajectory-Based Methods for Global Optimization
-
Cornell Univ., New York, Aug.
-
J. Lee, “Trajectory-Based Methods for Global Optimization,” Ph.D. dissertation, Cornell Univ., New York, Aug. 1998.
-
(1998)
Ph.D. dissertation
-
-
Lee, J.1
-
12
-
-
0035088090
-
Convergent regions of Newton homotopy methods: theory and computational applications
-
Jan.
-
J. Lee and H.-D. Chiang, “Convergent regions of Newton homotopy methods: theory and computational applications,” IEEE Trans. Circuits Syst. I, vol. 48, pp. 51-66, Jan. 2001.
-
(2001)
IEEE Trans. Circuits Syst. I
, vol.48
, pp. 51-66
-
-
Lee, J.1
Chiang, H.-D.2
-
13
-
-
0031185747
-
A novel method to compute the closest unstable equilibrium point for transient stability region estimate in power systems
-
July
-
C.-W. Liu and J. S. Thorp, “A novel method to compute the closest unstable equilibrium point for transient stability region estimate in power systems,” IEEE Trans. Circuits Syst. I, vol. 44, pp. 630-635, July 1997.
-
(1997)
IEEE Trans. Circuits Syst. I
, vol.44
, pp. 630-635
-
-
Liu, C.-W.1
Thorp, J.S.2
-
14
-
-
0025665877
-
Passivity and no-gain properties establish global convergence of a homotopy method for dc operating points
-
L. Trajkovic, R. C. Melville, and S.-C. Fang, “Passivity and no-gain properties establish global convergence of a homotopy method for dc operating points,” in Proc. IEEE Int. Symp. Circuits Systems, 1990, pp. 917-934.
-
(1990)
Proc. IEEE Int. Symp. Circuits Systems
, pp. 917-934
-
-
Trajkovic, L.1
Melville, R.C.2
Fang, S.-C.3
-
15
-
-
0031619194
-
HomSPICE: simulator with homotopy algorithms for finding dc and steady-state solutions of nonlinear circuits
-
Monterey, CA, June, TPA 19-2.
-
L. Trajkovic, S. Sanders, and E. Fung, “HomSPICE: simulator with homotopy algorithms for finding dc and steady-state solutions of nonlinear circuits,” in Proc. IEEE Int. Symp. Circuits Systems, Monterey, CA, June 1998, TPA 19-2.
-
(1998)
Proc. IEEE Int. Symp. Circuits Systems
-
-
Trajkovic, L.1
Sanders, S.2
Fung, E.3
-
16
-
-
0031270743
-
On the stability of dc operating points obtained by solving hybrid equations
-
Nov.
-
K. Yamamura and T. Sekiguchi, “On the stability of dc operating points obtained by solving hybrid equations,” IEICE Trans. Fund., vol. E80-A, no. 11, pp. 2291-2299, Nov. 1997.
-
(1997)
IEICE Trans. Fund.
, vol.E80-A
, Issue.11
, pp. 2291-2299
-
-
Yamamura, K.1
Sekiguchi, T.2
-
17
-
-
0032661141
-
A fixed-point homotopy method for solving modified nodal equations
-
June
-
K. Yamamura, T. Sekiguchi, and Y. Inoue, “A fixed-point homotopy method for solving modified nodal equations,” IEEE Trans. Circuits Syst. I, vol. 46, pp. 654-665, June 1999.
-
(1999)
IEEE Trans. Circuits Syst. I
, vol.46
, pp. 654-665
-
-
Yamamura, K.1
Sekiguchi, T.2
Inoue, Y.3
|